Теория для егэ по математике
Содержание:
- Особенности уровней ЕГЭ по математике
- Физический смысл производной
- Основные правила дифференцирования
- Метод группировки
- Обратные тригонометрические функции и простейшие тригонометрические уравнения
- Задания второй части профильного экзамена
- Теория к заданию 7 из ЕГЭ по математике (профильной)
- Основные правила дифференцирования
- Физический смысл производной
- Геометрический смысл производной
- Задания с развернутым ответом: немного статистики
- Несовместные события
- Какие темы важно знать для ЕГЭ по математике 2022?
- Квадратные уравнения
- Независимые события
- Показательные уравнения
Особенности уровней ЕГЭ по математике
В 2015 году ЕГЭ по математике разделили на базовый и профильный уровни. Это упростило жизнь выпускникам, которые не планируют поступать на специальности, связанные с математикой. Если ЕГЭ по математике нужен только для получения аттестата, можно сдать его облегченную версию, оставив время и силы для профильных экзаменов.
Базовый уровень ЕГЭ по математике
Как устроен базовый ЕГЭ по математике? Экзамен идет 180 минут, он состоит из 21 задания, за каждое из которых можно получить 1 балл. Этот экзамен единственный, который переводится не в 100-бальную систему, а в оценки.
Пока перевод баллов ЕГЭ по математике базового уровня в оценки не опубликован ФИПИ, но мы добавим его в статью, как только появится официальная информация.
В ЕГЭ по математике базового уровня 6 тематических блоков:
Тематические блоки, ЕГЭ по математике 2022, базовый уровень
Подробнее про базовый ЕГЭ по математике, включая разбор всех заданий, читайте здесь, а мы перейдём к профильному.
Профильный уровень ЕГЭ по математике
Данный экзамен, как и остальные ЕГЭ, переводится в 100-бальную систему.
Пока перевод баллов ЕГЭ по математике профильного уровня в 100-бальную систему пока не опубликован ФИПИ. Мы добавим его в статью, как только появится официальная информация.
Экзамен состоит из двух частей: Часть 1 с кратким ответом, а Часть 2 — с развернутым. Длится он 235 минут. Всего есть 18 заданий, которые разделены на 3 блока: алгебра, геометрия и реальная математика. Максимальное количество первичных баллов — 31.
Физический смысл производной
Если материальная точка движется прямолинейно и ее координата изменяется в зависимости от времени по закону $x(t)$, то мгновенная скорость данной точки равна производной функции.
$v(t) = x'(t)$
Точка движется по координатной прямой согласно закону $x(t)= 1,5t^2-3t + 7$, где $x(t)$ — координата в момент времени $t$. В какой момент времени скорость точки будет равна $12$?
Решение:
1. Скорость – это производная от $x(t)$, поэтому найдем производную заданной функции
$v(t) = x'(t) = 1,5·2t -3 = 3t -3$
2. Чтобы найти, в какой момент времени $t$ скорость была равна $12$, составим и решим уравнение:
$3t-3 = 12$
$3t = 15$
$t = 5$
Ответ: $5$
Основные правила дифференцирования
1. Производная суммы (разности) равна сумме (разности) производных
$(f(x) ± g(x))’= f'(x)±g'(x)$
Найти производную функции $f(x)=3x^5-cosx+{1}/{x}$
Производная суммы (разности) равна сумме (разности) производных.
$f'(x) = (3x^5 )’-(cos x)’ + ({1}/{x})’ = 15x^4 + sinx — {1}/{x^2}$
2. Производная произведения
$(f(x) · g(x))’= f'(x) · g(x)+ f(x) · g(x)’$
Найти производную $f(x)=4x·cosx$
$f'(x)=(4x)’·cosx+4x·(cosx)’=4·cosx-4x·sinx$
3. Производная частного
$({f(x)}/{g(x)})’={f'(x)·g(x)-f(x)·g(x)’}/{g^2(x)}$
Найти производную $f(x)={5x^5}/{e^x}$
$f'(x)={(5x^5)’·e^x-5x^5·(e^x)’}/{(e^x)^2}={25x^4·e^x-5x^5·e^x}/{(e^x)^2}$
4. Производная сложной функции равна произведению производной внешней функции на производную внутренней функции
$f(g(x))’=f'(g(x))·g'(x)$
$f(x)= cos(5x)$
$f'(x)=cos'(5x)·(5x)’=-sin(5x)·5= -5sin(5x)$
Метод группировки
Методом группировки удобно пользоваться, когда на множители необходимо разложить многочлен с четным количеством слагаемых. В данном способе необходимо собрать слагаемые по группам и вынести из каждой группы общий множитель за скобку. У нескольких групп после вынесения в скобках должны получиться одинаковые выражения, далее эту скобку как общий множитель выносим вперед и умножаем на скобку полученного частного.
Пример:
Разложить многочлен на множители $2a^3-a^2+4a-2$
Решение:
Для разложения данного многочлена применим метод группировки слагаемых, для этого сгруппируем первые два и последние два слагаемых, при этом важно правильно поставить знак перед второй группировкой, мы поставим знак + и поэтому в скобках запишем слагаемые со своими знаками. $2a^3-a^2+4a-2=(2a^3-a^2)+(4a-2)$
$2a^3-a^2+4a-2=(2a^3-a^2)+(4a-2)$
Далее из каждой группы вынесем общий множитель
$(2a^3-a^2)+(4a-2)=a^2(2a-1)+2(2a-1)$
После вынесения общих множителей получили пару одинаковых скобок. Теперь данную скобку выносим как общий множитель.
$a^2(2a-1)+2(2a-1)=(2a-1)(a^2+2)$
Произведение данных скобок — это конечный результат разложения на множители.
Обратные тригонометрические функции и простейшие тригонометрические уравнения
Арккосинус
Если, $|а|≤1$, то $arccos а$ – это такое число из отрезка $$, косинус которого равен $а$.
Если, $|а|≤1$, то $arccos а = t ⇔ \{\table \cos (t)=a; \0≤t≤π;$
$arcos(-a) = π-arccosa$, где $0≤а≤1$
Уравнение вида $cos t=a$, eсли, $|а|≤1$, имеет решение
$t=±arccos a+2πk; k∈Z$
Частные случаи
$cos t =1, t = 2πk;k∈Z$
$cos t = 0, t = {π}/{2}+πk;k∈Z$
$cos t = -1, t=π+2πk;k∈Z$
Найдите наименьший положительный корень уравнения $сos{2πx}/{3}=-{√3}/{2}$
$сos{2πx}/{3}=-{√3}/{2}$
${2πx}/{3}=±arccos(-{√3}/{2})+2πk;kϵZ$
${2πx}/{3}=±(π-arccos{√3}/{2})+2πk;kϵZ$
${2πx}/{3}=±(π-{π}/{6})+2πk;kϵZ$
${2πx}/{3}=±{5π}/{6} +2πk;kϵZ$
Далее избавимся от всех величин, мешающих иксу. Для этого разделим обе части уравнения на ${2π}/{3}$
$x=±{5π·3}/{6·2π} +{2π·3}/{2π}k$
$x=±1,25+3k$
Чтобы найти наименьший положительный корень, подставим вместо $k$ целые значения
$k=0$
$x_1= -1,25$
$x_2=1,25$
$к=1$
$х_1=3-1,25=1,75$
$х_2=3+1,25=4,25$
Нам подходит $1,25$ – это и есть результат
Ответ: $1,25$
Арксинус
Если, $|а|≤1$, то $arcsin a$ – это такое число, из отрезка $[-{π}/{2};{π}/{2}]$, синус которого равен $а$.
Если, $|а|≤1$, то $arcsin a = t ⇔ \{\table \sint=a; \-{π}/{2}≤t≤{π}/{2};$
$arcsin(-a)= — arcsin a$, где $0≤а≤1$
Если, $|а|≤1$, то уравнение $sin t =a$ можно решить и записать двумя способами:
$1. t_1 = arcsin a+2πk;k∈Z$
$t_2 = (π- arcsin a)+ 2πk;k∈Z$
$2. t=(-1)^n arcsin a+πn; n∈Z$
$3.$ Частные случаи
$sin t = 0, t=πk;k∈Z$
$sin t = 1, t={π}/{2}+2πk;k∈Z$
$sin t = -1,t=-{π}/{2}+2πk;k∈Z$
Арктангенс
$arctg a$ — это такое число, из отрезка $[-{π}/{2};{π}/{2}]$, тангенс которого равен $а$.
$arctg a = t ⇔ \{\table \tgt=a; \-{π}/{2}≤t≤{π}/{2};$
$arctg(-a)= — arctg a$
Задания второй части профильного экзамена
В эту часть вошли непростые, комбинированные задачи, однако научиться решать можно каждую.
Задание №13 посвящено уравнениям: тригонометрическим, показательным и другим. Всё чаще в этом номере дают комбинаторное уравнение — логарифм плюс тригонометрия и другие вариации.
В задании №14 вам предлагается решить стереометрическую задачу. Она может быть на объём многогранников и их сечения или нахождение расстояния между прямой и плоскостью. Чтобы решить эти задачи, нужно хорошо знать теорию и много практиковаться.
В задании №15 вам встретятся неравенства: смешанные, иррациональные или неравенства, содержащие модуль.
Для решения задачи №16 нужны твёрдые знания по планиметрии. Это задание проверяет ваше умение находить элементы трапеции, треугольника, окружности и других фигур.
Задание №17 часто называют экономикой, так как оно связано с финансовой математикой. Вам может попасться задача о кредитах: например, на поиск суммы платежа, процентной ставки или срока. Также в этом номере вы можете встретить задачу на вклады или оптимизацию. Решение потребует большого количества вычислений, поэтому развивайте навык быстрого счёта.
Одно из самых сложных заданий ЕГЭ по профильной математике 2021 — №18. Это задача с параметром. В школе эту тему часто обходят стороной. Прежде чем приниматься за решение, нужно хорошо повторить функции, их свойства и графики.
Задание №19 — нестандартная задача, можно сказать, олимпиадного уровня. Она проверяет умение строить и исследовать простейшие математические модели. Вам помогут логика и хорошее знание математики в целом.
Теория к заданию 7 из ЕГЭ по математике (профильной)
Производной функции $y = f(x)$ в данной точке $х_0$ называют предел отношения приращения функции к соответствующему приращению его аргумента при условии, что последнее стремится к нулю:
$f'(x_0)={lim}{△x→0}{△f(x_0)}/{△x}$
Дифференцированием называют операцию нахождения производной.
Таблица производных некоторых элементарных функций
Функция | Производная |
$c$ | $0$ |
$x$ | $1$ |
$x^n$ | $nx^{n-1}$ |
${1}/{x}$ | $-{1}/{x^2}$ |
$√x$ | ${1}/{2√x}$ |
$e^x$ | $e^x$ |
$lnx$ | ${1}/{x}$ |
$sinx$ | $cosx$ |
$cosx$ | $-sinx$ |
$tgx$ | ${1}/{cos^2x}$ |
$ctgx$ | $-{1}/{sin^2x}$ |
Основные правила дифференцирования
1. Производная суммы (разности) равна сумме (разности) производных
$(f(x) ± g(x))’= f'(x)±g'(x)$
Найти производную функции $f(x)=3x^5-cosx+{1}/{x}$
Производная суммы (разности) равна сумме (разности) производных.
$f'(x) = (3x^5 )’-(cos x)’ + ({1}/{x})’ = 15x^4 + sinx — {1}/{x^2}$
2. Производная произведения
$(f(x) · g(x))’= f'(x) · g(x)+ f(x) · g(x)’$
Найти производную $f(x)=4x·cosx$
$f'(x)=(4x)’·cosx+4x·(cosx)’=4·cosx-4x·sinx$
3. Производная частного
$({f(x)}/{g(x)})’={f'(x)·g(x)-f(x)·g(x)’}/{g^2(x)}$
Найти производную $f(x)={5x^5}/{e^x}$
$f'(x)={(5x^5)’·e^x-5x^5·(e^x)’}/{(e^x)^2}={25x^4·e^x-5x^5·e^x}/{(e^x)^2}$
4. Производная сложной функции равна произведению производной внешней функции на производную внутренней функции
$f(g(x))’=f'(g(x))·g'(x)$
$f(x)= cos(5x)$
$f'(x)=cos'(5x)·(5x)’=-sin(5x)·5= -5sin(5x)$
Физический смысл производной
Если материальная точка движется прямолинейно и ее координата изменяется в зависимости от времени по закону $x(t)$, то мгновенная скорость данной точки равна производной функции.
$v(t) = x'(t)$
Точка движется по координатной прямой согласно закону $x(t)= 1,5t^2-3t + 7$, где $x(t)$ — координата в момент времени $t$. В какой момент времени скорость точки будет равна $12$?
Решение:
1. Скорость – это производная от $x(t)$, поэтому найдем производную заданной функции
$v(t) = x'(t) = 1,5·2t -3 = 3t -3$
2. Чтобы найти, в какой момент времени $t$ скорость была равна $12$, составим и решим уравнение:
$3t-3 = 12$
$3t = 15$
$t = 5$
Ответ: $5$
Геометрический смысл производной
Напомним, что уравнение прямой, не параллельной осям координат, можно записать в виде $y = kx + b$, где $k$ – угловой коэффициент прямой. Коэффициент $k$ равен тангенсу угла наклона между прямой и положительным направлением оси $Ох$.
$k = tgα$
Производная функции $f(x)$ в точке $х_0$ равна угловому коэффициенту $k$ касательной к графику в данной точке:
$f'(x_0) = k$
Следовательно, можем составить общее равенство:
$f'(x_0) = k = tgα$
На рисунке касательная к функции $f(x)$ возрастает, следовательно, коэффициент $k > 0$. Так как $k > 0$, то $f'(x_0) = tgα > 0$. Угол $α$ между касательной и положительным направлением $Ох$ острый.
На рисунке касательная к функции $f(x)$ убывает, следовательно, коэффициент $k < 0$, следовательно, $f'(x_0) = tgα < 0$. Угол $α$ между касательной и положительным направлением оси $Ох$ тупой.
На рисунке касательная к функции $f(x)$ параллельна оси $Ох$, следовательно, коэффициент $k = 0$, следовательно, $f'(x_0) = tg α = 0$. Точка $x_0$, в которой $f ‘(x_0) = 0$, называется экстремумом.
На рисунке изображён график функции $y=f(x)$ и касательная к этому графику, проведённая в точке с абсциссой $x_0$. Найдите значение производной функции $f(x)$ в точке $x_0$.
Решение:
Касательная к графику возрастает, следовательно, $f'(x_0) = tg α > 0$
Для того, чтобы найти $f'(x_0)$, найдем тангенс угла наклона между касательной и положительным направлением оси $Ох$. Для этого достроим касательную до треугольника $АВС$.
Найдем тангенс угла $ВАС$. (Тангенсом острого угла в прямоугольном треугольнике называется отношение противолежащего катета к прилежащему катету.)
$tg BAC = {BC}/{AC} = {3}/{12}= {1}/{4}=0,25$
$f'(x_0) = tg ВАС = 0,25$
Ответ: $0,25$
Производная так же применяется для нахождения промежутков возрастания и убывания функции:
Если $f'(x) > 0$ на промежутке, то функция $f(x)$ возрастает на этом промежутке.
Если $f'(x) < 0$ на промежутке, то функция $f(x)$ убывает на этом промежутке.
На рисунке изображен график функции $y = f(x)$. Найдите среди точек $х_1,х_2,х_3…х_7$ те точки, в которых производная функции отрицательна.
В ответ запишите количество данных точек.
Решение:
Отрицательным значениям производной соответствуют интервалы, на которых функция $f (x)$ убывает. Поэтому, выделим на рисунке интервалы, на которых функция убывает.
В выделенных интервалах находятся точки $х_2, х_4$. В ответ напишем их количество $2$.
Ответ: $2$
Задания с развернутым ответом: немного статистики
Многие думают, что эта часть ЕГЭ по математике очень сложная. Поэтому ребята, которые не рассчитывают на высокие баллы, даже не приступают к ней. И очень зря! С помощью этих заданий можно заработать дополнительные баллы и побороться за высокое место в рейтинге.
Сейчас будет немного статистики. В среднем около 30% учеников получают полные 2 балла за решение № 12, а вот неравенство № 14 дается хуже, только около 12% с ним справляются на полный балл. Геометрия даётся ещё хуже: стереометрию № 13 полностью решают 2% выпускников, планиметрию (№ 16) менее 5%. А вот с экономической задачей (№ 15) справляются около 15%, а это целых 2 балла! Что касается № 17 и 18, то они даются ещё хуже, но на то они и самые сложные, хотя 1 балл за № 18 по статистике получают около 25% сдающих — там нужно просто привести пример.
Несовместные события
Два события $А$ и $В$ называют несовместными, если отсутствуют исходы, благоприятствующие одновременно как событию
$А$, так и событию $В$. (События, которые не могут произойти одновременно)
Вероятность суммы двух несовместных событий $A$ и $B$ равна сумме вероятностей этих
событий:
$Р(А+В)=Р(А)+Р(В)$
На экзамене по алгебре школьнику достается один вопрос их всех экзаменационных. Вероятность
того, что это вопрос на тему «Квадратные уравнения», равна $0,3$. Вероятность того, что это вопрос на тему
«Иррациональные уравнения», равна $0,18$. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите
вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.
Решение:
Данные события называются несовместные, так как школьнику достанется вопрос ЛИБО по теме «Квадратные уравнения»,
ЛИБО по теме «Иррациональные уравнения». Одновременно темы не могут попасться. Вероятность суммы двух
несовместных событий $A$ и $B$ равна сумме вероятностей этих событий:
$Р(А+В)=Р(А)+Р(В)$
$Р = 0,3+0,18=0,48$
Ответ: $0,48$
Какие темы важно знать для ЕГЭ по математике 2022?
В математике, как и в любом предмете, есть опорные темы. Если вы их выучите, будет легче справиться с экзаменом.
Формулы тригонометрии
Очень важно знать формулы тригонометрии и уметь применять их. Хорошая новость: в справочных материалах можно найти несколько тригонометрических формул
Но формул гораздо больше. Я советую не зубрить их, а научиться выводить: приходить к формулам шаг за шагом, опираясь на тождества. Кстати, мы учим выводить формулы на курсах подготовки к ЕГЭ: это полезно, чтобы оказаться на экзамене во всеоружии и ничего не перепутать.
Квадратные уравнения
Эти уравнения мы учимся решать еще в 7 классе. Они встречаются в ЕГЭ по математике постоянно: и как самостоятельные задания, и внутри более сложных уравнений или неравенств. Квадратные уравнения могут встретиться в математических моделях № 8 и № 15, в задачах на геометрию и стереометрию, в задании № 17 с параметром.
Самое главное — хорошо знать универсальные методы решения. Первый — через формулу дискриминанта, второй — через теорему Виета, которая может сэкономить время на экзамене.
Треугольники
Эта замечательная тема, которую проходят в 7 классе — основа основ всей геометрии. Она нужна и для решения стереометрии. и для простейших планиметрических задач. Еще треугольники необходимы, чтобы освоить огромное количество теорем
Выучите все, что с ними связано! Особое внимание обратите на прямоугольные треугольники, которые встречаются чаще остальных — тогда геометрические задачи сразу станут проще
Проценты
Самая нелюбимая тема моих учеников после тригонометрии, которую необходимо хорошо знать. Проценты нужны для реальной математики — это № 8 (с кратким ответом) и № 15 (с развернутым ответом). Понимание этой темы может принести вам 3 первичных балла.
Квадратные уравнения
Квадратное уравнение — уравнение вида $ax^2 + bx + c = 0$, где $a, b, c$ — некоторые числа a$≠0$, $x$ — неизвестное. Перед тем как решать уравнение, необходимо раскрыть скобки и собрать все слагаемые в левой части уравнения.
Числа $a, b, c$ называются коэффициентами квадратного уравнения.
- $a$ — старший коэффициент;
- $b$ — средний коэффициент;
- $c$ — свободный член.
Если в квадратном уравнении коэффициенты $b$ и $c$ не равны нулю, то уравнение называется полным квадратным уравнением. Например, уравнение $2x^2 – 8x + 3 = 0$. Если один из коэффициентов $b$ или $c$ равен нулю или оба коэффициента равны нулю, то квадратное уравнение называется неполным. Например, $5x^2 – 2x = 0$.
Решение неполных квадратных уравнений
Неполное квадратное уравнение имеет вид $ax^2 + bx = 0$, если $a$≠0$; $c$=0$. В левой части этого уравнения есть общий множитель $x$.
1. Вынесем общий множитель $x$ за скобки.
Мы получим $x (ax + b) = 0$. Произведение равно нулю, если хотя бы один из множителей равен нулю. Поэтому получаем $x = 0$ или $ax + b =0$. Таким образом, данное уравнение эквивалентно двум уравнениям:
$x = 0; ax + b = 0$
2. Решаем получившиеся уравнения каждое отдельно.
Мы получим $x = 0$ и $x={-b}/{a}$. Следовательно, данное квадратное уравнение имеет два корня $x = 0$ и $x={-b}/{a}$
$4х^2 — 5х = 0$
Вынесем х как общий множитель за скобки:
$х (4х — 5) = 0$
Приравняем каждый множитель к нулю и найдем корни уравнения.
$x = 0$ или $4х — 5 = 0$
$х_1 = 0 х_2 = 1,25$
Ответ: $х_1 = 0; х_2 = 1,25$
Неполное квадратное уравнение вида $ax^2 + c = 0, a≠0, b=0$
Для решения данного неполного квадратного уравнения выразим $x^2$.
$ax^2 + c = 0$
$ax^2 = — c$
$x_2 = {-c}/{a}$
При решении последнего уравнения возможны два случая:
если ${-c}/{a}>0$, то получаем два корня: $x = ±v{{-c}/{a}}$
если ${-c}/{a}<0$, то уравнение во множестве действительных числе не имеет решений.
$x^2 — 16 = 0$
$x^2 = 16$
$x = ±4$
Ответ: $х_1 = 4, х_2 = — 4$
Решение с помощью дискриминанта
Дискриминантом квадратного уравнения D называется выражение
$b^2 — 4ac$.
При решении уравнения с помощью дискриминанта возможны три случая:
1. $D > 0$. Тогда корни уравнения равны:
$x_{1,2}={-b±√D}/{2a}$
2. $D = 0$. В данном случае решение даёт два двукратных корня:
$x_{1}=x_{2}={-b}/{2a}$
3. $D < 0$. В этом случае уравнение не имеет корней.
$3х^2 — 11 = -8х$
Соберем все слагаемые в левую часть уравнения и расставим в порядке убывания степеней
$3х^2 + 8х — 11 = 0$
$a = 3 ,b = 8, c = — 11$
$D = b^2- 4ac = 82- 4 · 3 · (-11) = 196 = 142$
$x_{1}={-b+√D}/{2a}={-8+14}/{6}=1$
$x_{2}={-b-√D}/{2a}={-8-14}/{6}=-3{2}/{3}$
Ответ: $x_1=1, x_2=-3{2}/{3}$
Устные способы
Если сумма коэффициентов равна нулю $(а + b + c = 0)$, то $х_1= 1, х_2={с}/{а}$
$4х^2+ 3х — 7 = 0$
$4 + 3 — 7 = 0$, следовательно $х_1= 1, х_2=-{7}/{4}$
Ответ: $х_1= 1, х_2 = -{7}/{4}$
Если старший коэффициент в сумме со свободным равен среднему коэффициенту $(a + c = b)$, то $х_1= — 1, х_2=-{с}/{а}$
$5х^2+ 7х + 2 = 0$
$5 + 2 = 7$, следовательно, $х_1= -1, х_2 =-{2}/{5}$
Ответ: $х_1= -1, х_2 = -{2}/{5}$
Кубические уравнения
Для решения простых кубических уравнений необходимо обе части представить в виде основания в третьей степени. Далее извлечь кубический корень и получить простое линейное уравнение.
$(x — 3)^3 = 27$
Представим обе части как основания в третьей степени
$(x — 3)^3 = $33
Извлечем кубический корень из обеих частей
$х — 3 = 3$
Соберем известные слагаемые в правой части
$x = 6$
Ответ: $х = 6$
Дробно рациональные уравнения
Рациональное уравнение, в котором левая или правая части являются дробными выражениями, называется дробным.
Чтобы решить дробное уравнение, необходимо:
- найти общий знаменатель дробей, входящих в уравнение;
- умножить обе части уравнения на общий знаменатель;
- решить получившееся целое уравнение;
- исключить из его корней те, которые обращают в ноль общий знаменатель.
$4x + 1 — {3}/{x} = 0$
1. находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)
$x≠0$
2. находим общий знаменатель дробей и умножаем на него обе части уравнения
$4x + 1 — {3}/{x}= 0¦· x$
$4x · x + 1 · x — {3·x}/{x} = 0$
3. решаем полученное уравнение
$4x^2 + x — 3 = 0$
Решим вторым устным способом, т.к. $а + с = b$
Тогда $х_1 = — 1, х_2 = {3}/{4}$
4. исключаем те корни, при которых общий знаменатель равен нулю В первом пункте получилось, что при $x = 0$ уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.
Ответ: $х_1 = — 1, х_2 = {3}/{4}$
При решении уравнения с двумя дробями можно использовать основное свойство пропорции.
Основное свойство пропорции: Если ${a}/{b} = {c}/{d}$, то $a · d = b · c$
Независимые события
Два события $А$ и $В$ называются независимыми, если вероятность появления каждого из них не зависит от того,
появилось другое событие или нет. В противном случае события называются зависимыми.
Вероятность произведения двух независимых событий $A$ и $B$ равна произведению этих
вероятностей:
$Р(А·В)=Р(А)·Р(В)$
Иван Иванович купил два различных лотерейных билета. Вероятность того, что выиграет первый
лотерейный билет, равна $0,15$. Вероятность того, что выиграет второй лотерейный билет, равна $0,12$. Иван Иванович
участвует в обоих розыгрышах. Считая, что розыгрыши проводятся независимо друг от друга, найдите вероятность того,
что Иван Иванович выиграет в обоих розыгрышах.
Решения:
Вероятность $Р(А)$ — выиграет первый билет.
Вероятность $Р(В)$ — выиграет второй билет.
События $А$ и $В$ – это независимые события. То есть, чтобы найти вероятность того, что они произойдут оба
события, нужно найти произведение вероятностей
$Р(А·В)=Р(А)·Р(В)$
$Р=0,15·0,12=0,018$
Ответ: $0,018$
Показательные уравнения
Показательными называют такие уравнения, в которых неизвестное содержится в показателе степени.
$a^x=b$
При решении показательных уравнений используются свойства степеней, вспомним некоторые из них:
1. При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели складываются.
$a^n·a^m=a^{n+m}$
2. При делении степеней с одинаковыми основаниями основание остается прежним, а показатели вычитаются
$a^n:a^m=a^{n-m}$
3. При возведении степени в степень основание остается прежним, а показатели перемножаются
$(a^n)^m=a^{n∙m}$
4. При возведении в степень произведения в эту степень возводится каждый множитель
$(a·b)^n=a^n·b^n$
5. При возведении в степень дроби в эту степень возводиться числитель и знаменатель
$({a}/{b})^n={a^n}/{b^n}$
6. При возведении любого основания в нулевой показатель степени результат равен единице
$a^0=1$
7. Основание в любом отрицательном показателе степени можно представить в виде основания в таком же положительном показателе степени, изменив положение основания относительно черты дроби
$a^{-n}={1}/{a^n}$
${a^{-n}}/{b^{-k}}={b^k}/{a^n}$
8. Радикал (корень) можно представить в виде степени с дробным показателем
$√^n{a^k}=a^{{k}/{n}}$
Виды показательных уравнений:
1. Простые показательные уравнения:
а) Вида $a^{f(x)}=a^{g(x)}$, где $а >0, a≠1, x$ — неизвестное. Для решения таких уравнений воспользуемся свойством степеней: степени с одинаковым основанием ($а >0, a≠1$) равны только тогда, когда равны их показатели.
$f(x)=g(x)$
b) Уравнение вида $a^{f(x)}=b, b>0$
Для решения таких уравнений надо обе части прологарифмировать по основанию $a$, получается
$log_{a}a^{f(x)}=log_{a}b$
$f(x)=log_{a}b$
2. Метод уравнивания оснований.
3. Метод разложения на множители и замены переменной.
- Для данного метода во всем уравнении по свойству степеней надо преобразовать степени к одному виду $a^{f(x)}$.
- Сделать замену переменной $a^{f(x)}=t, t > 0$.
- Получаем рациональное уравнение, которое необходимо решить путем разложения на множители выражения.
- Делаем обратные замену с учетом того, что $t > 0$. Получаем простейшее показательное уравнение $a^{f(x)}=t$, решаем его и результат записываем в ответ.
Пример:
Решите уравнение $2^{3x}-7·2^{2x-1}+7·2^{x-1}-1=0$
Решение:
По свойству степеней преобразуем выражение так, чтобы получилась степень 2^x.
$(2^x)^3-{7·(2^x)^2}/{2}+{7·2^x}/{2-1}=0$
Сделаем замену переменной $2^x=t; t>0$
Получаем кубическое уравнение вида
$t^3-{7·t^2}/{2}+{7·t}/{2}-1=0$
Умножим все уравнение на $2$, чтобы избавиться от знаменателей
$2t^3-7·t^2+7·t-2=0$
Разложим левую часть уравнения методом группировки
$(2t^3-2)-(7·t^2-7·t)=0$
Вынесем из первой скобки общий множитель $2$, из второй $7t$
$2(t^3-1)-7t(t-1)=0$
Дополнительно в первой скобке видим формулу разность кубов
$2(t-1)(t^2+t+1)-7t(t-1)=0$
Далее скобку $(t-1)$ как общий множитель вынесем вперед
$(t-1)(2t^2+2t+2-7t)=0$
Произведение равно нулю, когда хотя бы один из множителей равен нулю
1) $(t-1)=0;$ 2) $2t^2+2t+2-7t=0$
Решим первое уравнение
$t_1=1$
Решим второе уравнение через дискриминант
$2t^2-5t+2=0$
$D=25-4·2·2=9=3^2$
$t_2={5-3}/{4}={1}/{2}$
$t_3={5+3}/{4}=2$
Получили три корня, далее делаем обратную замену и получаем три простых показательных уравнения
$2^x=1; 2^x={1}/{2}; 2^x=2$
$2^x=2^0; 2^x=2^{-1}; 2^x=2^1$
$х_1=0; х_2=-1; х_3=1$
Ответ: $-1; 0; 1$
4. Метод преобразования в квадратное уравнение
- Имеем уравнение вида $А·a^{2f(x)}+В·a^{f(x)}+С=0$, где $А, В$ и $С$ — коэффициенты.
- Делаем замену $a^{f(x)}=t, t > 0$.
- Получается квадратное уравнение вида $A·t^2+B·t+С=0$. Решаем полученное уравнение.
- Делаем обратную замену с учетом того, что $t > 0$. Получаем простейшее показательное уравнение $a^{f(x)}=t$, решаем его и результат записываем в ответ.
Способы разложения на множители:
Вынесение общего множителя за скобки.
Чтобы разложить многочлен на множители путем вынесения за скобки общего множителя надо:
- Определить общий множитель.
- Разделить на него данный многочлен.
- Записать произведение общего множителя и полученного частного (заключив это частное в скобки).
Пример:
Разложить на множители многочлен: $10a^{3}b-8a^{2}b^2+2a$.
Общий множитель у данного многочлена $2а$, так как на $2$ и на «а» делятся все члены. Далее найдем частное от деления исходного многочлена на «2а», получаем:
$10a^{3}b-8a^{2}b^2+2а=2a({10a^{3}b}/{2a}-{8a^{2}b^2}/{2a}+{2a}/{2a})=2a(5a^{2}b-4ab^2+1)$
Это и есть конечный результат разложения на множители.