Всероссийская олимпиада школьников по математике
Содержание:
- Подготовка к олимпиадам: младшие школьники (5–7 классы)
- Задачи ЕГЭ по математике
- Долгая дорога к успеху в математике
- Льготы для победителей и призеров. Вопросы и Ответы
- Всероссийская олимпиада школьников по физике
- Математика вокруг нас
- Призеры XXI Российской олимпиады школьников по математике (Саратов, 1995)
- Короткий путь к призёрству по информатике
- Призеры XX Российской олимпиады школьников по математике (Тверь, 19-25 апреля 1994)
- Всероссийская олимпиада школьников по математике
- Варианты математических олимпиад
- Призеры XXIII Всероссийской математической олимпиады школьников (Калуга, 18–25.04.1997)
- Этапы Всероссийской олимпиады школьников
- Выбор вуза: между МФТИ и НИУ ВШЭ
- Призеры XXII Всероссийской олимпиады школьников по математике (Рязань, 18-24 апреля 1996)
Подготовка к олимпиадам: младшие школьники (5–7 классы)
Две основные олимпиады для младших школьников — это Математический праздник и Турнир Архимеда. Наряду с ними готовимся к олимпиадам «Ломоносов», «Покори Воробьёвы горы!», «Высшая проба», «Курчатов», а также к школьному и муниципальному этапам Всероссийской олимпиады школьников по математике.
Группировка листков по темам во многом следует тематическому каталогу problems.ru (как наиболее удачному с моей точки зрения). Листки содержат:
- все задачи Матпраздника с момента его появления (то есть с 1990 года);
- все задачи Городской устной математической олимпиады для 6–7 классов с момента её появления (с 2002 года);
- все задачи Турнира Архимеда с 2011 года;
- задачи последних олимпиад «Покори Воробьёвы горы!», «Ломоносов», «Высшая проба» «Курчатов» и «Физтех», а также школьных и муниципальных этапов Всероссийской олимпиады школьников.
На базе этих листков создано пособие Олимпиадная математика. Задачник 6–7.
Задачи ЕГЭ по математике
В данном разделе приведены задачи ЕГЭ по математике (профильный уровень, сложная часть), а также диагностических и тренировочных работ МИОО начиная с 2009 года. Последнее пособие («Нестандартные задачи на ЕГЭ по математике») содержит авторские решения.
- Тригонометрические уравнения на ЕГЭ по математике
- Стереометрия на ЕГЭ по математике
- Алгебраические уравнения и неравенства на ЕГЭ по математике
- Показательные уравнения и неравенства на ЕГЭ по математике
- Логарифмические уравнения и неравенства на ЕГЭ по математике
- Планиметрия на ЕГЭ по математике
- Экономические задачи на ЕГЭ по математике
- Задачи с параметрами на ЕГЭ по математике
- Нестандартные задачи на ЕГЭ по математике
Долгая дорога к успеху в математике
К призёрству на Всеросе я плавно шёл с пятого класса. Раз в неделю мы приходили на кружок и по 2-3 часа решали задачи. Достаточно найти одного хорошего преподавателя, который даст базовые знания, а дальше — практиковаться как можно больше.
Постепенно ребята из нашего маткружка стали участвовать во всевозможных олимпиадах, причём по разным предметам. Опыт олимпиад стал ключевым в моей подготовке: я меньше волновался, больше узнавал разных подходов и методов решения задач. В результате на очередную олимпиаду приходил как к себе домой. Это не значит, что я был совершенно спокоен. На заключительном этапе в 11-ом классе было трудно справиться с волнением — всё-таки это большая ответственность.
Я, например, думал, что стану историком, когда в 6 классе занял одно из первых мест в Москве по этому предмету. Но в следующем году уровень конкуренции среди «историков» серьёзно возрос, я не успел под него подстроиться, а вот в математике успел — так определился мой путь.
На протяжении всей средней и старшей школы я посещал математический кружок раз в неделю. Домашних заданий в кружке нам не задавали: мы приходили, решали, кто сколько мог. Конечно, были и обычные уроки по школьной программе, но никаких других дополнительных занятий не было. Если математики слишком много — тоже плохо, может надоесть. Я знаю нескольких ребят, в том числе трёхкратного призёра Всероса по математике, которые побеждали в олимпиадах, занимаясь только в нашем кружке.
Я становился призёром заключительного этапа Всероссийской олимпиады школьников по математике три года подряд: в 9, 10 и 11 классах. Каждый раз я оказывался в числе «средних» призёров: не приближался к победителям, но и не был «в хвосте».
Так выглядит диплом призёра заключительного этапа Всероссийской олимпиады школьников
Льготы для победителей и призеров. Вопросы и Ответы
Какие олимпиады могут давать льготы при поступлении в высшие учебные заведения?
Согласно действующему законодательству (порядок приёма граждан в ВУЗы, закон «Об образовании»), льготы при поступлении в ВУЗ могут быть предоставлены только победителям и призёрам заключительного этапа Всероссийской олимпиады школьников, а также победителям и призёрам олимпиад, вошедшим в Перечень олимпиад школьников на 2012-2013 учебный год.
Что даёт диплом победителя/призёра регионального (муниципального) этапа Всероссийской олимпиады школьников?
Статус победителя/призёра регионального (муниципального) этапа, при условии продолжения обладателем диплома обучения в общеобразовательном учреждении в следующем году, даёт возможность участвовать во Всероссийской олимпиаде по этому предмету с регионального (муниципального) этапа, минуя предыдущие.
Никаких льгот при поступлении в ВУЗ данный диплом не даёт.
Что даёт диплом победителя/призёра заключительного этапа Всероссийской олимпиады школьников?
Данный диплом, при наличии у его обладателя права на получение высшего образования за счёт средств бюджета Российской Федерации, даёт ему право зачисления без вступительных испытаний в ВУЗы на направления подготовки, соответствующие профилю олимпиады.
На направления подготовки, не соответствующие профилю олимпиады, результаты победителей и призёров могут быть засчитаны как наивысшие результаты вступительных испытаний по этому предмету (в случае их наличия).
Вопрос о соответствии профиля олимпиады направлению подготовки решает ученый совет Вуза.
Какие бывают льготы победителям и призёрам олимпиад из Перечня?
Льготы бывают двух видов: зачисление без экзаменов и засчитывание максимальной оценки за ЕГЭ по предмету или за дополнительное внутреннее вступительное испытание.
Кто определяет льготы по дипломам олимпиад из Перечня? Когда они будут утверждены и опубликованы? Почему ВУЗы дают разные льготы за один и тот же диплом?
Согласно приказу №285, льготы при поступлении для победителей и призёров олимпиад из Перечня предоставляются по решению вуза.
По этой причине Оргкомитет обращается к участникам, их учителям и родителям с просьбой: ВСЕ вопросы по поводу льгот адресовать НЕ Оргкомитетам олимпиад, а исключительно приемным комиссиям соответствующих факультетов интересующих Вас вузов.
Как узнать, какая олимпиада какого уровня?
В настоящий момент доступен проект приказа Министерства Образования и Науки РФ «Об установлении уровней олимпиад школьников«. В скором времени он будет подписан и опубликован в «Российской Газете».
Какие документы являются основанием для предоставления приёмной комиссией ВУЗа льготы при поступлении?
В соответствии с письмом МОН РФ, в качестве документа об олимпиаде абитуриент имеет право предоставить Диплом или Свидетельство о внесении записи в общероссийскую базу данных победителей и призёров олимпиад школьников (далее — электронная версия диплома), которое может быть верифицировано приёмными комиссиями на сайте миролимпиад.рф.
Могу ли я несколько раз воспользоваться своей льготой?
Льготой «Зачисление без вступительных экзаменов» можно воспользоваться не более одного раза независимо от того, в каком количестве олимпиад, дающих такую льготу, человек победил.
Льготой «Максимальный балл по вступительному испытанию» можно пользоваться сколько угодно раз (в том числе по дипломам, предоставляющим льготу «Зачисление без вступительных экзаменов» в другие ВУЗы).
Где взять электронную версию диплома олимпиады из Перечня?
После подписания приказа об уровнях олимпиад школьников, электронные версии дипломов будут доступны для скачивания на сайте РСОШ.
Я не могу распечатать электронную версию диплома. В дипломе неверно указаны мои ФИО или школа. Что делать?
В случае, если Ваш диплом не распечатывается или содержит ошибки, обратитесь за помощью в оргкомитет соотвествующей олимпиады или в службы РСОШ.
Как я могу получить оригинал своего диплома (не электронную версию)?
Данную информацию Вам стоит уточнить у организаторов конкретной олимпиады. Контактные данные олимпиад по праву можно найти в соответствующем разделе.
Всероссийская олимпиада школьников по физике
Во Всероссийской олимпиаде по физике участвуют школьники 7–11 классов. При этом в 7 и 8 классах присутствуют только школьный и муниципальный этапы; для семиклассников и восьмиклассников роль регионального и заключительного этапов играет олимпиада им. Дж. К. Максвелла.
В 9–11 классах Всероссийская олимпиада проводится полноформатно — в четыре этапа.
Муниципальный этап проходит в заранее установленный день. Предлагается четыре-пять задач различной степени сложности.
Региональный и заключительный этапы проходят по единой схеме: теоретический тур и экспериментальный тур. На теоретическом туре даётся пять задач, каждая оценивается в 10 баллов. Экспериментальный тур содержит два задания, каждое по 15 баллов. Таким образом, как на регионе, так и в финале школьник может набрать максимум 80 баллов.
В 2020/21 году общая сумма баллов за задания регионального этапа равнялась 100.
В следующих трёх таблицах можно посмотреть граничные баллы победителей и призёров (соответственно в 9, 10 и 11 классе) последних региональных этапов Всероссийской олимпиады по физике в Москве, а также проходные баллы на заключительный этап.
РЭ 9 класс | Призёр | Победитель | Проходной |
---|---|---|---|
2020/21 | 30 | 81 | 71 |
2019/20 | 26 | 63 | 56 |
2018/19 | 40 | 75 | 70 |
2017/18 | 25 | 63 | 55 |
2016/17 | 30 | 70 | 64 |
2015/16 | 34 | 65 | 57 |
РЭ 10 класс | Призёр | Победитель | Проходной |
---|---|---|---|
2020/21 | 40 | 73 | 66 |
2019/20 | 30 | 63 | 58 |
2018/19 | 40 | 66 | 62 |
2017/18 | 35 | 68 | 63 |
2016/17 | 30 | 60 | 53 |
2015/16 | 35 | 65 | 57 |
РЭ 11 класс | Призёр | Победитель | Проходной |
---|---|---|---|
2020/21 | 40 | 75 | 57 |
2019/20 | 30 | 60 | 55 |
2018/19 | 35 | 66 | 58 |
2017/18 | 45 | 69 | 67 |
2016/17 | 30 | 60 | 56 |
2015/16 | 36 | 70 | 62 |
Хорошо видно, что проходной балл может значительно варьироваться от года к году, поэтому опираться на опыт прошлых лет нет никакого смысла: всё зависит только от того, как написали в этом году остальные участники. Единственный ориентир — проходной обычно на несколько баллов меньше границы победителей в Москве.
В следующей таблице приведены задания Всероссийской олимпиады по физике последних лет, в частности — все варианты предпоследнего и заключительного этапов за всю историю Всероссийской олимпиады (с 1992 года). На пересечении строки (ваш класс) и столбца (этап Всеросса) находятся ссылки на варианты. Цифры ссылки — год проведения финала олимпиады.
Отметим, что до 2009 года Всероссийская олимпиада состояла из пяти этапов: школьный, муниципальный, региональный, предпоследний (который назывался зональным до 2002 года и федеральным окружным в 2002–2008 годах) и заключительный. С целью единообразия предпоследний этап мы всегда называем региональным.
ШЭ | МЭ | РЭ | ЗЭ | |
---|---|---|---|---|
7 класс |
, , , , , , |
, , , , , , |
, | — |
8 класс |
, , , , , , |
, , , , , , |
, , |
— |
9 класс |
, , , , , |
, , , , , |
, , , , , , , , , , , , , , , , , , , , , , , , |
, , , , , , , , , , , , , , , , , , , , , , |
10 класс |
, , , , , |
, , , , , |
, , , , , , , , , , , , , , , , , , , , , , , , |
, , , , , , , , , , , , , , , , , , , , , , |
11 класс |
, , , , , |
, , , , , |
, , , , , , , , , , , , , , , , , , , , , , , , |
, , , , , , , , , , , , , , , , , , , , , , |
На основе классификации задач 1992–2017 годов составлены программы подготовки к региональному и заключительному этапам:
- 9 класс;
- 10 класс.
Чтобы успешно подготовиться к экспериментальным турам регионального и заключительного этапов, обязательно ознакомьтесь с соответствующими материалами последних лет.
- Экспериментальный тур регионального этапа (с 2002 года).
- Экспериментальный тур заключительного этапа (с 2000 года).
Математика вокруг нас
Друзья, оглянитесь! Вокруг нас появляется столько новых технологий и изобретений, просто невозможных без математики; навыки вычислений, умение правильно считать требует от Вас каждая хорошая профессия, не говоря уже о просто походе за покупками.
Математика – «царица наук», и это не случайно – она существует во всем.
В наше время у нас есть отличная возможность учиться и развиваться каждый день на протяжении всей жизни, поэтому математические навыки и умения улучшать и преумножать никогда не поздно!
Основоположник современной механики и физики Галилео Галилей говорил:
«Математика — это язык, на котором написана книга природы».
От познания этой великой науки можно получить неимоверное удовольствие.
Математический конкурс, безусловно, очень полезен для всех школьников, в нем отрабатывается безукоризненный подход к пониманию механики окружающего мира, улучшается логическое мышление и способность действовать, четко анализируя ситуацию. Улучшение памяти при этом является закономерным приятным последствием.
Призеры XXI Российской олимпиады школьников по математике (Саратов, 1995)
Первые премии
по девятым классам получил
Дуров Николай — Санкт-Петербург, с.ш. 239;
по десятым классам —
Норин Сергей — Санкт-Петербург, с.ш. 239;
по одиннадцатым классам —
Челкак Дмитрий — Санкт-Петербург, с.ш. 30.
по девятым классам получили
Старков Константин — Санкт-Петербург, с.ш. 30.
Шаповалов Данил — Иваново, с.ш. 13,
Спиридонов Антон — Киров,с.ш. 35,
Уздин Сергей — Санкт-Петербург, с.ш. 239,
Русаков Александр — Калуга, с.ш. 10,
Плахов Андрей — Сургут, с.ш. 1,
Сааль Александр — Санкт-Петербург, академическая гимназия,
Вашевник Андрей — Москва, с.ш. 57,
Шадрин Сергей — Москва, с.ш. 57,
Симоновский Андрей — Санкт-Петербург, с.ш. 239;
по десятым классам —
Запорожец Дмитрий — Санкт-Петербург, с.ш. 239,
Рудо Елена — Санкт-Петербург, с.ш. 239,
Егоров Александр — Санкт-Петербург, с.ш. 239,
Салихов Константин — Москва, СУНЦ МГУ,
Якимова Оксана — Москва, с.ш. 57,
Френкель Владимир — Санкт-Петербург, с.ш. 30,
Потапов Владимир — п. Черноголовка Московской обл., с.ш.82,
Слободянин Николай — Санкт-Петербург, с.ш. 239.
Есаулова Вероника — Санкт-Петербург, с.ш. 239,
Макарычев Юрий — Москва, с.ш. 57;
по одиннадцатым классам —
Островский Михаил — Москва, с.ш. 57,
Косовский Николай — Санкт-Петербург, с.ш. 30,
Куликов Михаил — Черноголовка Московской обл., с.ш. 82,
Петров Константин — Москва, с.ш. 7
Борисов Александр — Нижний Новгород, с.ш. 40.
Буфетов Александр — Москва, с.ш. 2,
Баргачев Виктор — Санкт-Петербург, Аничков лицей,
Подлинский Олег — Долгопрудный, с.ш. 5,
Кацев Илья — Санкт-Петербург, с.ш. 30,
Алехнович Михаил — Москва, с.ш. 57,
Никонов Игорь — Москва, с.ш. 345.
Третьи премии
по девятым классам получили
Смирнов Александр — Москва, с.ш. 57,
Малистов Алексей — Рязань, с.ш. 52,
Мельник Сергей — Санкт-Петербург, с.ш. 239
Мищенко Андрей — Ульяновск, с.ш. 2,
Севрюхин Юрий — Москва, с.ш. 57,
Самойлов Борис — п. Юрья Кировской обл., с.ш. 2,
Лепчинский Михаил — Челябинск, с.ш. 31,
Прудников Андрей — Москва, с.ш. 57,
Злобин Сергей — Киров, с.ш. 35;
по десятым классам —
Патрикеев Михаил — Екатеринбург, СУНЦ,
Сергеева Татьяна — Ижевск, с.ш. 41,
Рогожников Евгений — Калуга, с.ш. 41,
Белозеров Дмитрий — Долгопрудный, с.ш. 5,
Коровин Александр — Долгопрудный, с.ш. 5,
Крюков Виктор — Москва, с.ш. 57;
по одиннадцатым классам —
Зеленский Олег — Темрюк, с.ш. 13,
Кириенко Денис — Тула, с.ш. 73,
Попов Олег — Москва, с.ш. 57,
Прафенов Антон — Новосибирск, СУНЦ НГУ,
Дужин Федор — Переславль-Залесский.с.ш. 7,
Евдокимов Лев — Санкт-Петербург, с.ш. 239,
Романова Софья — Кирово-Чепецк, с.ш. 3,
Тиморин Владлен — Москва, с.ш. 1303,
Никулин Сергей — Киров, с.ш. 35.
Короткий путь к призёрству по информатике
До 8 класса я был с компьютером «на вы», а потом в школу пришла новая преподавательница курса программирования, и я заинтересовался информатикой. Я понял, что не хотел бы заниматься теоретической наукой и увидел возможности применить знания на практике.
В 10 классе я и вовсе не попал на заключительный этап, зато отправился в летнюю компьютерную школу от «Московского центра непрерывного математического образования». Это стало переломным моментом в истории с информатикой. Лучший способ подкачать знания по предмету — поучаствовать в школе, где несколько недель в интенсивном режиме преподают олимпиадные основы.
На выездной школе ученики не распыляются на другие школьные предметы, нет больших перерывов — все сосредоточены на занятиях. Мой уровень значительно вырос, и эффект летней школы сказался через год — я стал призёром на Всеросе.
Хотя я занялся информатикой довольно поздно и добился успеха на олимпиаде, не советую затягивать с подготовкой. Единицы выпускников способны взять призовые места, если начали готовиться во втором полугодии 10 класса. Нужно как минимум за 2-3 года готовиться к Всероссийской олимпиаде.
Призеры XX Российской олимпиады школьников по математике (Тверь, 19-25 апреля 1994)
Дипломы I степени
по 9 классам получили
Горшенин А. — Челябинск, ФМЛ 31.
Козлов М. — Санкт-Петербург, с.ш. 239,
Норин С. — Санкт-Перетбург, с.ш. 239,
Уздин С. — Санкт-Петербург, с.ш. 239;
по 10 классам —
Борисов Л. — Нижний Новгород, с. ш. 40,
Петров К. — Москва, с.ш. 7,
Челкак Д. — Санкт-Петербург, с.ш. 30;
по 11 классам —
Карасев Р. — Долгопрудный, с.ш. 5,
Сенцов Ю. — Калуга, с.ш. 5.
Дипломы II степени
по 9 классам получили
Бабенко В. — Москва, с.ш. 91, 8 кл,
Гимон И. — Москва, с.ш. 57.
Есаулова В. — Санкт- Петербург, с.ш. 239,
Запорожец Д. — Санкт-Петербург, с.ш. 239
Казаков М. — Санкт-Петербург, с.ш. 239,
Макарычев Ю. — Москва, с.ш. 57,
Мамедов М. — Санкт-Петербург, с.ш. 239,
Рудо Е. — Санкт-Петербург, с.ш. 239,
Сергеева Т. — Ижевск, с.ш. 41.
Слободяник Н. — Санкт-Петербург, с.ш. 239,
Спиридонов А. — Вятка. ФМШ 135;
по 10 классам —
Буфетов А. — Москва, с.ш. 2,
Дужин Ф. — Переславль-Залесский, с.ш. 7,
Кацев И. — Санкт- Петербург, с.ш. 30.
Куликов М. — п. Черноголовка Московской обл.. с.ш. 82.
Островский М. — Москва, с.ш. 57,
Сай С. — Санкт-Петербург, с.ш. 239;
по 11 классам —
Богданов И. — Пермь, ФМШ 9,
Бондарко М. — Санкт-Петербург, с.ш. 239,
Дюбина А. — Санкт-Петербург, с.ш. 239,
Тарасов А. — Москва, СУНЦ МГУ,
Уткин П. — Челябинск, ФМЛ 31.
Дипломы III степени
по 9 классам получили
Беляев А. — Саратов, ФТЛ 1,
Бойцов Я. — Санкт-Петербург, с.ш. 239,
Васильев С. — Москва, с.ш. 57.
Герко А. — Москва, с.ш. 57,
Грибалко А. — Иваново, с.ш. 33,
Громова О. — Краснодар, с.ш. 4,
Егорова Ю. — Северодвинск, лицей 17,
Коровин А. — Долгопрудный, с.ш. 5,
Медведев Д. — Санкт-Петербург, с.ш. 239,
Никитин П. — Мурманск, гимназия 1,
Плахов А. — Сургут, гимназия, 8 кл,
Якимова О. — Москва, с.ш. 57;
по 10 классам —
Алехнович М. — Москва, с.ш. 57,
Баргачев В. — Санкт-Петербург, Аничков лицей.
Бушков С. — Вятка, с.ш. 35,
Голубев А. — Челябинск, ФМЛ 31,
Драгошанский О. — Ухта, технический лицей,
Евдокимов Л. — Санкт-Петербург, с.ш. 239,
Ершов М. — Троицк Московской обл., с.ш. 5,
Захаров А. — Курган, с.ш. 19,
Зеленский О. — Темрюк, с.ш. 13,
Кириенко Д. — Тула. с.ш. 73,
Колинько К. — Санкт-Петербург, с.ш. 610
Корнилов А. — Ростов-на-Дону, с.ш. 5,
Пикулин С. — Вятка, с.ш. 35,
Романов А. — Пермь, с.ш. 9;
по 11 классам —
Белов П. — Санкт-Петербург, ФМГ 30,
Голынский А. — Москва, СУНЦ МГУ,
Добринская Н. — Саратов, ФТЛ 1,
Дубова О. — Заволжье Нижегородской обл., с.ш. 17.
Зубов М. — Москва, с.ш. 57,
Казаков Е. — Челябинск, ФМЛ 31.
Ковалев Л. — Владивосток, с.ш. 73,
Кондратьев М. — Санкт-Петербург, ФМГ 30,
Кострыкин С. — Ангарск, с.ш. 10,
Кравцов А. — Старый Оскол, с.ш. 17,
Лапунов А. — Вятка, ФМЛ,
Мальков К. — Вятка. ФМЛ,
Матюнин Е. — Москва, с.ш. 57,
Орлов А. — Санкт-Петербург, с.ш. 239.
Павчинский Р. — Санкт- Петербург, ФМГ 30,
Храпай В. — Тихвин, с.ш. 8.
Шувалов В. — Москва, с.ш. 57.
Всероссийская олимпиада школьников по математике
Во Всероссийской олимпиаде по математике участвуют школьники 4–11 классов. При этом для 4–6 классов в настоящее время проводится только школьный этап, а для 7 и 8 классов — только школьный и муниципальный этапы.
В восьмом классе роль регионального и заключительного этапов Всеросса играет олимпиада им. Леонарда Эйлера.
В 9–11 классах формат Всероссийской олимпиады становится полным — присутствуют все четыре этапа.
Муниципальный этап проходит в заранее установленный день. Предлагается пять-шесть задач различной степени сложности.
Региональный и заключительный этапы проходят по единой схеме: первый день и второй день. В каждый из этих дней предлагается по пять задач (РЭ) или по четыре задачи (ЗЭ), любая задача оценивается в семь баллов. Таким образом, максимально возможная сумма на региональном этапе Всеросса по математике составляет 70 баллов.
Посмотрите граничные баллы победителей и призёров последних региональных этапов Всероссийской олимпиады по математике, а также проходные баллы на заключительный этап.
РЭ 9 класс | Призёр | Победитель | Проходной |
---|---|---|---|
2020/21 | 34 | 60 | 49 |
2019/20 | 35 | 63 | 48 |
2018/19 | 35 | 60 | 48 |
2017/18 | 31 | 56 | 44 |
РЭ 10 класс | Призёр | Победитель | Проходной |
---|---|---|---|
2020/21 | 34 | 62 | 50 |
2019/20 | 35 | 60 | 47 |
2018/19 | 35 | 60 | 53 |
2017/18 | 40 | 59 | 53 |
РЭ 11 класс | Призёр | Победитель | Проходной |
---|---|---|---|
2020/21 | 34 | 53 | 44 |
2019/20 | 35 | 60 | 51 |
2018/19 | 35 | 60 | 54 |
2017/18 | 33 | 54 | 49 |
В нижеследующей таблице приведены задания Всероссийской олимпиады по математике последних лет. На пересечении строки (ваш класс) и столбца (этап Всеросса) находятся ссылки на варианты. Цифры ссылки — год проведения финала олимпиады. Прочерк означает, что данный этап не проводится для школьников данного класса.
ШЭ | МЭ | РЭ | ЗЭ | |
---|---|---|---|---|
5 класс |
, , , , , |
, | — | — |
6 класс |
, , , , , |
, | — | — |
7 класс |
, , , , , |
, , , , , |
— | — |
8 класс |
, , , , , |
, , , , , |
— | — |
9 класс |
, , , , , |
, , , , , |
, , , , , |
, , , , |
10 класс |
, , , , , |
, , , , , |
, , , , , |
, , , , , |
11 класс |
, , , , , |
, , , , , |
, , , , , |
, , , , |
Варианты математических олимпиад
Здесь содержатся варианты олимпиад по математике, используемые в повседневной работе. Ведь наилучший способ подготовиться к олимпиаде — это постоянно решать варианты последних лет.
Двузначное число в каждой ссылке означает год проведения финала олимпиады.
Всероссийская олимпиада школьников по математике
ШЭ | МЭ | РЭ | ЗЭ | |
---|---|---|---|---|
5 класс |
, , , , , |
, | — | — |
6 класс |
, , , , , |
, | — | — |
7 класс |
, , , , , |
, , , , , |
— | — |
8 класс |
, , , , , |
, , , , , |
— | — |
9 класс |
, , , , , |
, , , , , |
, , , , , |
, , , , |
10 класс |
, , , , , |
, , , , , |
, , , , , |
, , , , , |
11 класс |
, , , , , |
, , , , , |
, , , , , |
, , , , |
Примечания.
- Муниципальный этап для 5 и 6 классов начиная с 2015/16 года не проводится.
- Региональный и заключительный этапы для 5–8 классов не предусмотрены. Вместо них проводится олимпиада им. Леонарда Эйлера (для восьмиклассников).
Олимпиада им. Леонарда Эйлера
Олимпиада им. Леонарда Эйлера («Всеросс в младшей лиге») проводится с 2008/09 года.
Регион |
, , , , , , , , , , |
Финал |
, , , , , , , , , , |
Олимпиада «Покори Воробьёвы горы!»
5–6 классы |
, 20a, 20b, 18.1a, 18.1b, 18.2a, 18.2b, 18.3a, 18.3b17.1a, 17.1b, 17.2a, 17.2b, 17.3a, 17.3b16.1a, 16.1b, 16.2a, 16.2b, 16.3a, 16.3b |
7 класс |
, 20a, 20b, 18.1a, 18.1b, 18.2a, 18.2b, 18.3a, 18.3b17.1a, 17.1b, 17.2a, 17.2b, 17.3a16.1a, 16.1b, 16.2a, 16.2b, 16.3a, 16.3b , , , |
8 класс |
, 20a, 20b, 18.1a, 18.1b, 18.2a, 18.2b, 18.3a, 18.3b17.1a, 17.1b, 17.2a, 17.2b, 17.3a16.1a, 16.1b, 16.2a, 16.2b, 16.3a, 16.3b , , , |
9 класс |
, 20a, 20b, 18.1a, 18.1b, 18.2a, 18.2b, 18.3a, 18.3b17.1a, 17.1b, 17.2a, 17.2b, 17.3a16.1a, 16.1b, 16.2a, 16.2b, 16.3a, 16.3b , , , |
10–11 классы |
, 20.10, 20.1119.1, 19.2, 19.3, 19.4, 19.5, 19.618.1, 18.2, 18.3, 18.4, 18.5, 18.617.1, 17.2, 17.3, 17.4, 17.516.1, 16.2, 16.3, 16.4, 16.5, 16.615.1, 15.2, 15.3, 15.4, 15.5, 15.614.1, 14.2, 14.3, 14.4, 14.5, 14.6, 14.713.1, 13.2, 13.3, 13.4, 13.5, 13.712.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.711.1, 11.2, 11.3, 11.410.1, 10.2, 10.3, 10.4, 10.5 |
Олимпиада «Физтех»
Онлайн | Финал | |
---|---|---|
5 класс |
, , |
— |
6 класс |
, , |
— |
7 класс |
, , , |
— |
8 класс |
, , , , |
— |
9 класс |
, , , , , , |
20.1, 20.2; 19.1, 19.218.1, 18.2; 17.1, 17.216.1, 16.2, 16.3 |
10 класс |
, , , , , , |
20.1, 20.2; 19.1, 19.218.1, 18.2; 17.1, 17.216.1, 16.2, 16.315.1, 15.2, 15.3 |
11 класс |
, , , , , , |
20.1, 20.2; 19.1, 19.218.1, 18.2; 17.1, 17.216.1, 16.2, 16.315.1, 15.2, 15.314.1, 14.2; 13.1, 13.212.1, 12.2; 11.1, 11.210.1, 10.2; 09.1, 09.2; , |
Экзамен1994 — 2008 |
08.1, 08.2, 08.3, 08.407.1, 07.2, 07.3, 07.406.1, 06.2, 06.3, 06.405.1, 05.2, 05.304.1, 04.2, 04.303.1, 03.2, 03.302.1, 02.2, 02.301.1, 01.2, 01.3 |
00.1, 00.299.1, 99.298.1, 98.297.1, 97.2, 97.396.1, 96.2, 96.395.1, 95.2, 95.394.1, 94.2, 94.3 |
Примечания.
- Очный финал для 5–8 классов пока не проводится.
- В 2016/17 и 2017/18 годах на онлайн-этапе для 5 и 6 классов давалось задание 7 класса.
- Очный финал для 10 класса впервые прошёл в 2015 году, а для 9 класса — в 2016 году.
Письменный экзамен мехмата МГУ и ДВИ МГУ
Мехмат |
, , , , , 04-03, 04-07; 03-03, 03-05, 03-0702-03, 02-05, 02-07; 01-03, 01-05, 01-0700-03, 00-05, 00-07; 99-03, 99-05, 99-0798-03, 98-05, 98-07; 97-03, 97-05, 97-0796-03, 96-05, 96-07; 95-03, 95-05, 95-0794-05, 94-07, 93-05, 93-07 |
ДВИ |
, , , , , , , |
Призеры XXIII Всероссийской математической олимпиады школьников (Калуга, 18–25.04.1997)
Дипломы I степени
по 9 классам получили
Поярков Алексей — Рыбинск, гимназия, 8 кл.;
по 10 классам —
Дуров Николай — Санкт-Петербург, ФМЛ 239,
Дилъман Степан — Челябинск, лицей 31,
Черепанов Евгений — Рыбинск, с.ш.17;
по 11 классам —
Уздин Сергей — Санкт-Петербург, ФМЛ 239.
Дипломы II степени
по 9 классам получили
Волк Денис — Москва, с.ш.57,
Фарутин Владимир — Санкт-Петербург, с.ш.610,
Дремов Владимир — Волгодонск, с.ш.24, 8 кл.,
Жиляев Владимир — Москва, с.ш.1543,
Петров Федор — Санкт-Петербург, ФМЛ 239,
Евсеев Антон — Москва, с.ш. 1260,
Мазин Михаил — Москва, с.ш.2,
Галкин Сергей — Москва, с.ш.2,
Горшков Алексей — Москва, с.ш.1543,
Тихомиров Сергей — Санкт-Петербург, ФМЛ 239,
Асомчик Александр — Новгород, с.ш. 117,
Певзнер Игорь — Киров, ФМЛ 35,
Хинцицкий Иван — Калуга, с.ш. 24;
по 10 классам —
Анно Ирина — Москва, с.ш.57,
Беленький Алексей — Санкт-Петербург, ФМЛ 239,
Розенберг Антон — Санкт-Петербург, ФМЛ 239,
Бахарев Федор — Санкт-Петербург, ФМЛ 239,
Сопкина Екатерина — Санкт-Петербург, ФМЛ 239,
Плахов Андрей — Волгодонск, с.ш. 19/20;
по 11 классам —
Митрофанов Михаил — Санкт-Петербург, ФМЛ 239,
Лепинский Михаил — Челябинск, лицей 31,
Мищенко Андрей — Москва, СУНЦ МГУ,
Самойлов Борис — Ростов-на-Дону, с.ш. 33,
Клепцын Виктор — Москва, с.ш. 57,
Шаповалов Данил — Иваново, с.ш. 33,
Тухвебер Сергей — Брянск, лицей 1.
Дипломы III степени
по 9 классам получили
Карвонен Максим — Рыбинск, с.ш. 2, 8 кл.,
Лебедев Алексей — с.Семеново, Уренского р-на Нижегородской обл., Семеновская с.ш.,
Лешко Денис — Ангарск, с.ш. 10,
Лифшиц Юрий — Санкт-Петербург, ФМЛ 239,
Мелещук Елизавета — Санкт-Петербург, Академическая гимназия,
Баскаков Илья — Москва, с.ш. 710,
Лузгарев Александр — Киров, ФМЛ 35,
Черников Алексей — Королев Московской обл., с.ш. 4,
Бейлин Андрей — Ростов-на-Дону, с.ш.58,
Ершов Денис — Москва, с.ш. 2,
Бабенко Максим — Саратов, ФТЛ 1,
Зинин Евгений — Краснодар, с.ш. 87,
Алишев Равиль — д. Кадырово Заикинского р-на, Татарстан, Татарско-турецкий лицей,
Шадрин Владимир — Киров, ФМЛ 35;
по 10 классам —
Етеревский Олег — Санкт-Петербург, ФМЛ 239,
Ткаченко Артем — Омск, с.ш. 88,
Водомеров Александр — Вологда, ВГЕМЛ,
Доценко Владимир — Москва, с.ш. 57,
Железняк Александр — Санкт-Петербург, ФМЛ 239,
Фирсова Татьяна — Саров, с.ш. 2,
Зинин Денис — Казань, ЭШЛ,
Рыбников Леонид — Москва, с.ш. 57,
Растатурин Алексей — Краснодар, с.ш. 48;
по 11 классам —
Малистов Алексей — Рязань, лицей 52,
Прудников Андрей — Москва, с.ш. 57,
Рафиков Евгений — Пермь, с.ш. 146,
Чернышев Сергей — Ярославль, с.ш. 33,
Шатохин Евгений — Армавир, гимназия 1,
Лившиц Евгений — Ижевск, с.ш. 30,
Новосельцев Андрей — Ростов-на- Дону, с.ш. 5,
Фирдман Илья — Омск, с.ш. 74,
Вашевник Андрей — Москва, с.ш. 57,
Злобин Сергей — Киров, ФМЛ 35,
Потапов Алексей — Сосновый Бор Ленинградской обл., с.ш. 8,
Спиридонов Антон — Киров, ФМЛ 35,
Петров Александр — Первоуральск, с.ш. 7,
Тимошенко Егор — Томск, с.ш. 7,
Федотовская Екатерина — Киров, ФМЛ 35.
Как внести исправления на эту страницу
Несмотря на то, что большинство этих списков взято из разных официальных публикаций,
(в том числе финальных протоколов жюри или публикаций в «Кванте»), очевидно, что
в любом длинном списке есть и прямые опечатки, и разные возможности для улучшения.
Никакого способа это собирать и делать, кроме как усилиями сообщества, не придумано.
Всякий желающий исправить опечатку, добавить своё имя (вместо инициала), поставить ссылку на свою страницу и т.п.
волен написать письмо на адрес olymp@mccme.ru
Этапы Всероссийской олимпиады школьников
ВсОШ делится на четыре этапа: школьный, муниципальный, региональный и заключительный. Первый этап — самый массовый: в нём принимают участие около шести миллионов человек. А теперь представьте сложность отбора, если до финала доходят только несколько сотен.
Школьный этап
Это ступень для всех желающих с 5 по 11 класс, так как квоты на количество участников нет. При желании можно выполнять задания более старших классов. Особенности этого этапа ВсОШ:
- организуется школами, лицеями, гимназиями;
- проводится в сентябре-октябре;
- по русскому языку и математике участниками могут быть четвероклассники;
- проводится очно, но существует также интернет-этап (о нём расскажем чуть позже).
Муниципальный этап
Ступень с более сложными заданиями. Чтобы попасть, нужно войти в списки преодолевших порог по каждому предмету и классу на школьном этапе. Особенности этого этапа ВсОШ:
- организуется органами местного самоуправления в сфере образования,
- проводится в ноябре и декабре,
- рассчитан на 7–11 классы.
Региональный этап
Помогает отобрать лучших среди победителей муниципального этапа. Здесь всё серьёзно — нужна академическая база за рамками углублённой школьной программы, подкованность, эрудиция и умение нестандартно мыслить. Особенности этапа:
- организуется органами государственной власти субъектов Российской Федерации в сфере образования,
- проводится в январе-феврале,
- рассчитан на 9–11 классы.
Заключительный этап
Вот и финал! Если вы добрались до последней ступени этой интеллектуальной битвы, значит, обошли ребят со всей России. Двери вузов уже открыты! Финальный этап ВсОШ:
- организуется Министерством просвещения России,
- проводится в марте–апреле.
Переход от этапа к этапу
Вот некоторые нюансы того, как регулируется продвижение участников по уровням соревнования:
- В первом этапе ВсОШ могут участвовать все желающие. На муниципальный приглашают тех, кто хорошо выступил на школьном, на региональный — отличившихся на муниципальном, и так далее.
- «Хорошо выступил» — это необязательно стал победителем или призёром. На каждом этапе Всеросса есть порог, при преодолении которого ученик проходит в следующий тур.
- Задания по классам, а не по возрасту. Например, задачки муниципального этапа строятся исходя из программы седьмого класса и старше, а начиная с регионального этапа — из программы старшей школы. В истории Всеросса был случай, когда в заключительном этапе участвовал четвероклассник: вундеркинд выполнял задания девятого класса, начиная со школьного этапа.
- Победители и призёры прошлого года могут участвовать в том этапе, на котором остановились, минуя отборочные туры. Например, если в 2018 году вы стали призёром заключительного этапа по физике, то в 2019 году вы вправе снова приехать на него. Поэтому существуют двух- и даже трёхкратные победители финала Всеросса.
Выбор вуза: между МФТИ и НИУ ВШЭ
Я выбирал между факультетом инноваций и высоких технологий МФТИ и факультетом компьютерных наук Вышки. В обоих вузах были кафедры «Яндекса», а я мечтал поработать в этой компании. В Вышке факультет только открывался, и было непонятно, что из этого выйдет. Поэтому я послушал совета родителей и лучших друзей — «выбрать что-то проверенное» — и пошёл на Физтех.
Пожалуй, на Физтехе приходится больше ботать. Для меня это плюс, так как получается воспитательный эффект — меньшая нагрузка меня бы расслабила. Сейчас я привык много трудиться и всегда знаю, чем себя занять. В любом случае надо быть готовым к тому, что придётся работать больше, чем в школе. Свободного времени у студентов сильных вузов мало, тусовки — редкая возможность.
По моим ощущениям, Физтех — это что-то более коллективное, ВШЭ — более индивидуальное. МФТИ расположен в Долгопрудном, студенты вместе и учатся, и отдыхают — это создаёт командную атмосферу. Сначала я этого не понимал, но теперь считаю атмосферу единения главным преимуществом Физтеха.
Призеры XXII Всероссийской олимпиады школьников по математике (Рязань, 18-24 апреля 1996)
Первые премии
по девятым классам получили
Бахарев Федор — Санкг-Петербург, с.ш. 239).
Дуров Николай — Санкт-Петербург, с.ш. 239;
по десятым классам —
Сун Шйаомин — Китай;
по одиннадцатым классам —
Рудо Елена — Санкт-Петербург, с.ш 239.
Норин Сергей — Санкт-Петербург, с.ш. 239.
Салихов Константин — Москва, СУНЦМГУ,
Егоров Александр — Санкт-Петербург, с.ш. 239.
Вторые премии
по девятым классам получили
Ли Цинхин — Китай.
Лебедев Алексей — Нижегородская обл., Семеновская с.ш., 8 кл.
Антонов Михаил — Омск. с.ш. 88,
Салль Александр — Санкт-Петербург, академическая гимн.,
Беленький Алексей — Санкт-Петербург, с.ш. 239,
Цэо Цин — Китай.
Чернышенко Дмитрий — Москва, С.Ш. 57.
Дремов Владимир — Волгодонск, с.ш. 24, 7кл.,
Ладонкин Дмитрий — Кропоткин,с.ш. 3,
Растатурин Алексей — Краснодар, с.ш. 48,
Етеревский Олег — Санкт-Петербург.с.ш. 239;
Ванюшина Ольга — Санкт-Петербург, с.ш. 239.
Самойлов Борис — Ростов-на-Дону,с.ш. 33,
Карпенков Олег — Москва, с.ш. 50,
Плохое Андрей — Сургут, гимназия 1,
Симановсхий Андрей — Санкт-Петербург, с.ш. 239.
Лепчинский Михаил — Челябинск, с.ш. 31.
Малистов Алексей — Рязань, школа-лицей 52,
Лившиц Евгений — Ижевск, с.ш. 30,
Шенг Йонгдай — Китай.
Старков Константин — Санкт-Петербург. Аничков линей.
Спиридонов Антон — Киров, с.ш. 35,
Тухвебер Сергей — Брянск, лицей 1;
Потапов Владимир — п.Черноголовка Московской обл.,с.ш.2,
Макарычев Константин — Москва, с.ш. 57,
Угловой Андрей — Санкт-Петербург, с.ш. 239.
Есаулова Вероника — Санкт-Петербург.с.ш. 239.
Макарычев Юрий — Москва, с.ш. 57.
Герко Александр — Москва, с.ш. 57.
Ляховицкий Григорий — Челябинск.с.ш. 31.
Запорожец Дмитрий — Санкт-Петербург, с.ш. 239.
Эстеров Александр — Москва, с.ш. 57,
Якимова Оксана — Москва, с.ш. 57.
Третьи премии
по девятым классам получили
Любимов Андрей — Москва, с.ш. 57,
Дильман Степан — Челябинск, с.ш. 31,
Петров Виктор — Санкт-Петербург, с.ш. 239.
Плохое Андрей — Волгодонск.с.ш. 19/20,
Розенберг Антон — Санкт-Петербург, с.ш 419,
Сопкина Екатерина — Санкт-Петербург, с.ш. 239,
Водомеров Александр — Вологда. ЕМЛ,
Шаповалов Данил — Иваново, с.ш. 33.
Фахрутдинов Валентин — Челябинск, с.ш. 31,
Анно Ирина — Москва, с.ш. 57.
Маликов Олег — Ижевск, с.ш. 41;
по десятым классам —
Чернышов Сергей — Ярославль, с.ш. 33.
Хин Зонг — Китай.
Рафиков Евгений — Пермь, с.ш. 146,
Алишев Равиль — Нижнекамск, лицей.
Уздин Сергей — Санкт-Петербург,с.ш. 239,
Шатохин Евгений — Армавир, с.ш. 1,
Клепцын Виктор — Москва, с.ш. 57,
Федотовская Екатерина — Киров, с.ш. 35.
Прудников Андрей — Москва, с.ш. 57,
Юное Аркадий — Краснодар, с.ш. 90,
Тимошенко Егор — Томск,с.ш. 7,
Гинзбург Павел — Санкт-Петербург, с.ш. 239,
Мищенко Андрей — Москва, СУНЦ МГУ,
Рыбин Михаил — Санкт-Петербург, с.ш. 239;
по одиннадцатым классам —
Никитин Павел — Мурманск, гимназия 1,
Беляев Александр — Саратов. ФТЛ 1,
Буденков Александр — Нижний Новгород, с.ш. 40.
Слободяник Николай — Санкт-Петербург, с.ш. 239.
Рогожников Евгений — Калуга, с.ш. 36,
Кузнецов Евгений — Ульяновск, с.ш. 40.
Козлов Марат — Санкт-Петербург, с.ш. 239,
Сергеева Татьяна — Ижевск, лицей 41,
Еттянова Дарья — Новосибирск, с.ш. 25.
Специальными призами
жюри награждены также
Салихов Константин — за оригинальное решение задачи 4 (11 кл.).
Есаулова Вероника — за оригинальное решение задачи 8 (11 кл.).
Беляев Александр — за оригинальное решение задачи 4 (11 кл.).Рогожников Евгений — за оригинальное и полное решение задачи 8 (11 кл.),
Громова Ольга (Краснодар, лицей 4. 11 кл ) — за волю к победе.
Мальцев Дмитрий (Кропоткин, гимназия 3, 11 кл.) — как лучший геометр.
Попов Сергей (Таганрог, с.ш. 37, 11 кл.) — за оригинальное решение задачи 1,
Сун Шйаомин — за оригинальное решение задачи 4 (10 кл.).
Лившиц Евгений — за существенное продвижение в задаче 8 (10 кл.),
Старков Константин — за оригинальное решение задачи 7 (10 кл.),
Спиридонов Антон — за оригинальное решение задачи 4 (10 кл.).
Малистов Алексей — как достойно представивший Рязань на олимпиаде,
Чернышенко Дмитрий — за красивое решение задачи 7 (9 кл ).
Лебедев Алексей — как лучший восьмиклассник.
Губин Ярослав (Белорецк, компьютерная школа, 9 кл.) — за оригинальное решение задачи 6.
Дремов Владимир — как лучший семиклассник,
Шапченко Кирилл (Рязань, с.ш. 24, 6 кл.) — как самый юный участник олимпиады.
Антонов Михаил — приз надежды и симпатий жюри.