Главные формулы для егэ по профильной математике

Содержание:

Оптика

Прохождение границы двух сред:

Закон отражения: `alpha=gamma`
Показатель преломления: `n=c/v`
Закон преломления: `sinalpha/sinbeta=n_2/n_1`
  `nu_1=nu_2`
  `n_1lambda_1=n_2lambda_2`

Линзы:

Оптическая сила линзы: `D=1/F` где F — фокусное расстояние
Формула тонкой линзы: `1/F=1/d+1/f` где d — расстояние от линзы до предмета, f — от линзы до изображения
Каждое слагаемое может входить в формулу со знаком плюс или минус:`+1/F` для собирающей линзы`-1/F` для рассеивающей линзы
`+1/d` для действительного предмета`-1/d` для мнимого предмета (построенного другой оптической системой)`+1/f` для действительного изображения`-1/f` для мнимого изображения
Линейное увеличение: `Г=h/H=f/d` где H — высота предмета, h — высота изображения

Волновая оптика:

Условие максимумов интерференции: `Deltad=klambda,   kinZZ`
Условие минимумов интерференции: `Deltad=(2k+1)lambda/2,   kinZZ`
Формула дифракционной решётки: `dsinvarphi=klambda,   kinZZ`

Бесплатно

ЕГЭ.рф

Сайт: https://егэ.рф

Платформа бесплатного тестирования уровня подготовки школьников к ЕГЭ по математике базового и профильного уровней — на основе реальных заданий от ФИПИ 2021.

Первая часть экзамена будет проверена сразу после сдачи и ты увидишь свои результаты незамедлительно. Также ты сможешь получить детальный разбор ошибок в письменных заданиях от экспертов ЕГЭ.

А по итогу ты сможешь сопоставить свои результаты с проходными баллами в ВУЗы и выбрать, куда поступать.

«4ЕГЭ»

Сайт: https://4ege.ru

Каждый видеоурок состоит из двух основных частей: простое изложение самой важной и необходимой теории по заданной теме и решения основных задач ЕГЭ

«Синергия»

Сайт: https://synergy.ru

Для вашего удобства на сайте собрано все, что может потребоваться для подготовки к экзамену по математике:

  • Демоверсии и КИМы, ЕГЭ предыдущих периодов
  • Теория и практика по каждому типу задания
  • Официальная информация и новости

Весь теоретический материал по математике разделен на вопросы из ЕГЭ и собран в файлы. Просто выбирайте интересующую тему (вопрос, раздел), открывайте лист и повторяйте (или учите, если забыли).

Информация изложена кратко, но просто и понятно. Схематическая подача поможет все быстро запомнить.

В практическом разделе собраны готовые решения самых сложных тестов. Просто выбирайте задание и смотрите подробный план решений задач того или иного типа.

Для удобства разбора листы разделены на 2 части. В первой — только сами задачи, которые можно решать самостоятельно. Во второй части — те же задачи, но с расписанным решением.

«РешуЕГЭ»

Сайт: https://mathb-ege.sdamgia.ru

Здесь регулярно выкладывают тренировочные варианты ЕГЭ по математике базового и профильного уровней. Каждый месяц — новый вариант. По окончании тестирования система проверит ваши ответы, покажет правильные решения и выставит оценку.

Чтобы тренироваться по определённым темам, вы можете составить свой вариант — по конкретным разделам задачного каталога.

Также на сайт размещен курс из 100 занятий «Д. Д. Гущин. Готовимся к ЕГЭ по профильной математике«. В нем рассмотрены все экзаменационные темы, дано большое количество заданий из школьной математики, материалов ЕГЭ, математических олимпиад и вузовских вступительных испытаний.

Занятия включают в себя конспекты, видеоуроки с разбором простых и сложных случаев, упражнения для мгновенной самопроверки и варианты для самостоятельной работы.

Для начала нужно авторизоваться на сайте и пройти входное тестирование, чтобы был построен ваш индивидуальный образовательный маршрут.

«Математика ЕГЭ 100БАЛЛОВ»

Сайт: https://vk.com

Страница для самоподготовки к ЕГЭ по математике волонтерского некоммерческого проекта. Ежедневно размещаются различные задания и полезные материалы для подготовки к экзамену по математике.

Есть теория в картинках, видеоуроки по отдельным темам, практические задания и пробные варианты ЕГЭ.

«Математикс»

Сайт: https://www.youtube.com

Канал создан в помощь тем, кто готовится к ЕГЭ по математике.

Здесь вы найдете плейлисты, посвященные следующим темам:

  • Уравнениям и Неравенствам №13 и №15 ЕГЭ
  • Задачам ЕГЭ №17 №18 №19
  • Стереометрии и Планиметрии №14 и №16 ЕГЭ
  • Высшей Математике (Теория с примерами)
  • Разборам задач из вариантов Ларина
  • Разборам вариантов СтатГрад

«ЕГЭ и ОГЭ на 80-ballov. Годограф»

Сайт: https://www.youtube.com

На ютуб-канале выложены короткие видеоуроки по основным темам подготовки «ЕГЭ по Математике 2021 80 баллов». Всего в плейлисте 261 видео. Для бесплатного просмотра открыто примерно 20% полного курса.

Полный курс, включающий в себя не только видеоматериал, доступен по платной подписке на сайте проекта 80-ballov.ru. Можно сначала оценить качество материала и подачи и, при необходимости, оплатить полный доступ.

Канал Бориса Трушина

Сайт: https://www.youtube.com

Личный канал преподавателя математики онлайн-школы «Фоксфорд».

Здесь вы найдете короткие и ёмкие видеоуроки по следующим темам:

  • Задания 1-12. ЕГЭ. Математика. Профильный уровень
  • Задания 13-19. ЕГЭ. Математика. Профильный уровень
  • Разборы вариантов ЕГЭ
  • Подборки по темам: Квадратный трёхчлен, Планиметрия, Неравенства, Теория вероятностей, Тригонометрия, Теория чисел и др.

План успешной подготовки к ЕГЭ по математике 2022

Если вы хотите получить больше 80 баллов на ЕГЭ, нужно идеально решать часть с кратким ответом, а также справляться с большинством заданий с развернутым ответом.

Чтобы постепенно прорабатывать материал, воспользуйтесь кодификатором

В нем обратите внимание на таблицу 2, а именно на блоки:

  • Алгебра
  • Уравнения и неравенства
  • Элементы комбинаторики, статистики и теории вероятностей
  • Функции
  • Начала математического анализа
  • Геометрия

Ориентируйтесь на указанную последовательность, но геометрию изучайте параллельно с остальными блоками — на нее нужно больше времени.

Самое главное — ни в коем случае не ограничивайтесь теорией. Ее у вас не спросят на экзамене, а вот задания решать придется. Поэтому тренируйте практические навыки: актуальные задания вы сможете найти в открытом банке заданий на сайте ФИПИ или в нашем тренажере «Решутест».

Основные формулы для профильного ЕГЭ

Выпускники, планирующие сдавать профиль, ставятся в более жесткие условия, чем те, кто выбрал базовый уровень. Учитывая то, что они видят перспективу своего дальнейшего обучения по направлениям, тесно или напрямую связанным с математикой, к их знаниям предъявляются повышенные требования. В частности, на официальные справочные материалы особенно рассчитывать не приходится. Все, что в них есть, это 5 тригонометрических тождеств.

Основываясь на данных, опубликованных на сайте ФИПИ, с большой долей вероятности потребуется знание следующих формул для сдачи ЕГЭ по профильной математике:

  • правила сокращенного умножения;
  • арифметическая и геометрическая прогрессии;
  • основы вероятностной теории;
  • свойства степеней и логарифмов;
  • азы тригонометрии (формулы двойного угла, суммы и разности аргументов; алгоритм преобразования разности и суммы в произведение; обратные функции);
  • производная (правила дифференцирования, элементарнее функции и уравнение касательной);
  • первообразная;
  • двухмерная планиметрия;
  • правила нахождения площадей геометрических фигур;
  • трехмерная стереометрия.

Опытные учителя и репетиторы собрали все формулы по математике, которые приходилось использовать на ЕГЭ в последние три года:

  1. ЕГЭ по математике – формулы для алгебры и начал анализа
  2. Формулы ЕГЭ – математика, раздел геометрия

Материалы для скачивания – в формате pdf.

Выученные назубок формулы к ЕГЭ по математике – это только часть пути к успешной сдаче, надо еще научиться правильно применять их. Хорошую практику даст решение сложных задач.

Обратные тригонометрические функции и простейшие тригонометрические уравнения

Арккосинус

Если, $|а|≤1$, то $arccos а$ – это такое число из отрезка $$, косинус которого равен $а$.

Если, $|а|≤1$, то $arccos а = t ⇔ \{\table \cos (t)=a; \0≤t≤π;$

$arcos(-a) = π-arccos⁡a$, где $0≤а≤1$

Уравнение вида $cos t=a$, eсли, $|а|≤1$, имеет решение

$t=±arccos ⁡ a+2πk; k∈Z$

Частные случаи

$cos t =1, t = 2πk;k∈Z$

$cos t = 0, t = {π}/{2}+πk;k∈Z$

$cos t = -1, t=π+2πk;k∈Z$

Найдите наименьший положительный корень уравнения $сos{2πx}/{3}=-{√3}/{2}$

$сos{2πx}/{3}=-{√3}/{2}$

${2πx}/{3}=±arccos⁡(-{√3}/{2})+2πk;kϵZ$

${2πx}/{3}=±(π-arccos{√3}/{2})+2πk;kϵZ$

${2πx}/{3}=±(π-{π}/{6})+2πk;kϵZ$

${2πx}/{3}=±{5π}/{6} +2πk;kϵZ$

Далее избавимся от всех величин, мешающих иксу. Для этого разделим обе части уравнения на ${2π}/{3}$

$x=±{5π·3}/{6·2π} +{2π·3}/{2π}k$

$x=±1,25+3k$

Чтобы найти наименьший положительный корень, подставим вместо $k$ целые значения

$k=0$

$x_1= -1,25$

$x_2=1,25$

$к=1$

$х_1=3-1,25=1,75$

$х_2=3+1,25=4,25$

Нам подходит $1,25$ – это и есть результат

Ответ: $1,25$

Арксинус

Если, $|а|≤1$, то $arcsin a$ – это такое число, из отрезка $[-{π}/{2};{π}/{2}]$, синус которого равен $а$.

Если, $|а|≤1$, то $arcsin a = t ⇔ \{\table \sint=a; \-{π}/{2}≤t≤{π}/{2};$

$arcsin(-a)= — arcsin a$, где $0≤а≤1$

Если, $|а|≤1$, то уравнение $sin t =a$ можно решить и записать двумя способами:

$1. t_1 = arcsin a+2πk;k∈Z$

$t_2 = (π- arcsin a)+ 2πk;k∈Z$

$2. t=(-1)^n arcsin ⁡ a+πn; n∈Z$

$3.$ Частные случаи

$sin t = 0, t=πk;k∈Z$

$sin t = 1, t={π}/{2}+2πk;k∈Z$

$sin t = -1,t=-{π}/{2}+2πk;k∈Z$

Арктангенс

$arctg a$ — это такое число, из отрезка $[-{π}/{2};{π}/{2}]$, тангенс которого равен $а$.

$arctg a = t ⇔ \{\table \tgt=a; \-{π}/{2}≤t≤{π}/{2};$

$arctg(-a)= — arctg a$

Формулы для базового ЕГЭ-2022 по математике

Формулы сокращённого умножения

`(a + b)^2=a^2 + 2ab + b^2`  
`(a − b)^2=a^2 − 2ab + b^2`  
`a^2 − b^2=(a + b)(a − b)`  
   
`a^3 + b^3=(a + b)(a^2 − ab + b^2)`  
`a^3 − b^3=(a − b)(a^2 + ab + b^2)`  
   
`(a + b)^3=a^3 + 3a^2b + 3ab^2 + b^3` Эти две формулы заучивать не обязательно, но желательно
`(a − b)^3=a^3 − 3a^2b + 3ab^2 − b^3`

Прогрессии

Геометрическая прогрессия:

`b_n=b_(n-1)*q`
`b_n=b_1*q^(n-1)`
`S_n=((q^n-1)*b_1)/(q-1)`
Бесконечно убывающая: `S=b_1/(1-q)`

Вероятность

Вероятность события A: `P(A)=m/n` m — число благоприятных событийn — общее число событий
     
События происходят A и B происходят одновременно `A*B`  
Независимые события: `P(A*B)=P(A)*P(B)` Когда вероятность одного события (А) не зависит от другого события (B)
Зависимые события: `P(A*B)=P(A)*P(B|A)` `P(B|A)` — вероятность события B при условии, что событие A наступило
     
Происходит или событие A, или B `A+B`  
Несовместные события: `P(A+B)=P(A)+P(B)` Когда невозможно наступление обоих событий одновременно, т.е. `P(A*B)=0`
Совместные события: `P(A+B)=P(A)+P(B)-P(A*B)` Когда оба события могут наступить одновременно

Свойства степеней

`a^0=1` `a^1=a`
`a^(-1)=1/a` `a^(-n)=1/a^n`
`a^(1/2)=sqrt(a)` `a^(1/n)=root(n)(a)`
`a^m*a^n=a^(m+n)` `a^m/a^n=a^(m-n)`
`(a*b)^n=a^n*b^n` `(a/b)^n=a^n/b^n`
`(a^m)^n=a^(m*n)` `a^(m/n)=root(n)(a^m)`

Свойства логарифмов

`log_ab=c«a^c=b` Определение логарифма
`log_a1=0`  
`log_aa=1`  
`log_a(b*c)=log_ab+log_ac`  
`log_a(b/c)=log_ab-log_ac`  
`log_ab^n=n*log_ab`  
`log_(a^m)b=1/m*log_ab`  
`log_ab=1/(log_ba)`  
`log_ab=(log_cb)/(log_ca)`  
`a^(log_cb)=b^(log_ca)`  
`a^(log_ab)=b`  

Геометрия

Планиметрия (2D)

Тригонометрия: `sinA=a/c`   `cosA=b/c`  
  `text(tg)A=sinA/cosA=a/b`  
Теорема косинусов: `c^2=a^2+b^2-2ab*cosC`  
Теорема синусов: `a/sinA=b/sinB=c/sinC=2R` где R — радиус описанной окружности
Уравнение окружности: `(x-x_0)^2+(y-y_0)^2=R^2` где `(x_0;y_0)` — координаты центра окружности
Соотношение вписанного и центрального углов: `beta=alpha/2=(uualpha)/2`  
Описанная окружность, треугольник: `R=(abc)/(4S)` См. также теорему синусов. Центр лежит на пересечении срединных перпендикуляров.
Вписанная окружность, треугольник: `r=S/p` где p — полупериметр многоугольника. Центр лежит на пересечении биссектрис.
Описанная окружность, четырёхугольник: `alpha+gamma=beta+delta=180^circ`  
Вписанная окружность, четырёхугольник: `a+c=b+d`  
Свойство биссектрисы: `a/x=b/y`  
Теорема о пересекающихся хордах: `AM*BM=CM*DM` Эти теоремы необходимо уметь выводить
Теорема об угле между касательной и хордой: `alpha=1/2uuAB`  
Теорема о касательной и секущей: `CM^2=AM*BM`  
Теорема об отрезках касательных: `AB=AC`  

Площади фигур:

Окружность: `S=pir^2`  
Треугольник: `S=1/2ah`  
Параллелограмм: `S=ah`  
Четырёхугольник: `S=1/2d_1d_2sinvarphi` У ромба `varphi=90^@`
Трапеция: `S=(a+b)/2*h`  

Молекулярная физика и термодинамика

Молекулярная физика

Средняя кинетическая энергия молекул `bar E_к=3/2kT` Здесь и далее рассматриваем только идеальный одноатомный газ
Давление газа: `p=nkT`  
Уравнение Менделеева-Клайперона: `pV=nuRT`  
Количество вещества в молях: `nu=m/M=N/N_A` M — молярная масса, берём её из таблицы Менделеева, не забываем переводить в кг/моль
Внутренняя энергия: `U=3/2nuRT`  
Закон Дальтона для смеси: `p=p_1+p_2+…`  
Относительная влажность: `varphi=p_(парц)/p_(насыщ)=rho_(парц)/rho_(насыщ)` См. также таблицу давления и плотности насыщенного водяного пара
Уравнение теплобаланса: `Q_1+Q_2+Q_3+…=0` `Q>0` в процессах, где теплота выделяется, и `Q

Термодинамика

`Q=cmDeltaT` где `с` — удельная теплоёмкость
`Q=lambdam` где `lambda` — удельная теплота плавления
`Q=rm` где `r` — удельная теплота парообразования
`Q=qm` где `q` — удельная теплота сгорания
Первое начало термодинамики: `Q=DeltaU+A`  
Работа газа в любом термодинамическом процессе — это площадь под pV-графиком `A=int_1^2pdV`(формулу запоминать не обязательно)
Работа в изобарном процессе: `A=p*DeltaV`  
Работа газа всегда связана с изменением объёма: `Vuarr rArr A>0«Vdarr rArr A`V=const rArr A=0`  
Работа внешних сил над газом: `A_(внеш.сил)=-A_(газа)`  
КПД: `eta=A_(цикл)/Q_н=(Q_н-Q_х)/Q_н`  
Машина Карно: `eta=(T_н-T_х)/T_н`  

Тригонометрия

Пусть имеется прямоугольный треугольник:

Тогда, определение синуса:

Определение косинуса:

Определение тангенса:

Определение котангенса:

Основное тригонометрическое тождество:

Простейшие следствия из основного тригонометрического тождества:

Синус двойного угла:

Косинус двойного угла:

Тангенс двойного угла:

Котангенс двойного угла:

Тригонометрические формулы сложения

Синус суммы:

Синус разности:

Косинус суммы:

Косинус разности:

Тангенс суммы:

Тангенс разности:

Котангенс суммы:

Котангенс разности:

Тригонометрические формулы преобразования суммы в произведение

Сумма синусов:

Разность синусов:

Сумма косинусов:

Разность косинусов:

Сумма тангенсов:

Разность тангенсов:

Сумма котангенсов:

Разность котангенсов:

Произведение синусов:

Произведение синуса и косинуса:

Произведение косинусов:

Формулы понижения степени

Формула понижения степени для синуса:

Формула понижения степени для косинуса:

Формула понижения степени для тангенса:

Формула понижения степени для котангенса:

Формула половинного угла для тангенса:

Формула половинного угла для котангенса:

Формулы приведения задаются в виде таблицы:

Геометрия в пространстве (стереометрия)

Главная диагональ куба:

Объем куба:

Объём прямоугольного параллелепипеда:

Главная диагональ прямоугольного параллелепипеда (эту формулу также можно назвать: «трёхмерная Теорема Пифагора»):

Объём призмы:

Площадь боковой поверхности прямой призмы (P – периметр основания, l – боковое ребро, в данном случае равное высоте h):

Объём кругового цилиндра:

Площадь боковой поверхности прямого кругового цилиндра:

Объём пирамиды:

Площадь боковой поверхности правильной пирамиды (P – периметр основания, l – апофема, т.е. высота боковой грани):

Объем кругового конуса:

Площадь боковой поверхности прямого кругового конуса:

Длина образующей прямого кругового конуса:

Объём шара:

Площадь поверхности шара (или, другими словами, площадь сферы):

Теория к заданию 4 из ЕГЭ по математике (профильной)

Вероятностью события $А$ называется отношение числа благоприятных для $А$ исходов к числу всех
равновозможных исходов

$P(A)={m}/{n}$, где $n$ – общее количество возможных исходов, а $m$ – количество исходов, благоприятствующих событию
$А$.

Вероятность события — это число из отрезка $$

В фирме такси в наличии $50$ легковых автомобилей. $35$ из них чёрные, остальные — жёлтые.
Найдите вероятность того, что на случайный вызов приедет машина жёлтого цвета.

Решение:

Найдем количество желтых автомобилей:

$50-35=15$

Всего имеется $50$ автомобилей, то есть на вызов приедет одна из пятидесяти. Желтых автомобилей $15$,
следовательно, вероятность приезда именно желтого автомобиля равна ${15}/{50}={3}/{10}=0,3$

Ответ:$0,3$

Противоположные события

Два события называются противоположными, если в данном испытании они несовместимы и одно из них обязательно
происходит. Вероятности противоположных событий в сумме дают 1.Событие, противоположное событию $А$, записывают
${(А)}{-}$.

$Р(А)+Р{(А)}{-}=1$

Независимые события

Два события $А$ и $В$ называются независимыми, если вероятность появления каждого из них не зависит от того,
появилось другое событие или нет. В противном случае события называются зависимыми.

Вероятность произведения двух независимых событий $A$ и $B$ равна произведению этих
вероятностей:

$Р(А·В)=Р(А)·Р(В)$

Иван Иванович купил два различных лотерейных билета. Вероятность того, что выиграет первый
лотерейный билет, равна $0,15$. Вероятность того, что выиграет второй лотерейный билет, равна $0,12$. Иван Иванович
участвует в обоих розыгрышах. Считая, что розыгрыши проводятся независимо друг от друга, найдите вероятность того,
что Иван Иванович выиграет в обоих розыгрышах.

Решения:

Вероятность $Р(А)$ — выиграет первый билет.

Вероятность $Р(В)$ — выиграет второй билет.

События $А$ и $В$ – это независимые события. То есть, чтобы найти вероятность того, что они произойдут оба
события, нужно найти произведение вероятностей

$Р(А·В)=Р(А)·Р(В)$

$Р=0,15·0,12=0,018$

Ответ: $0,018$

Несовместные события

Два события $А$ и $В$ называют несовместными, если отсутствуют исходы, благоприятствующие одновременно как событию
$А$, так и событию $В$. (События, которые не могут произойти одновременно)

Вероятность суммы двух несовместных событий $A$ и $B$ равна сумме вероятностей этих
событий:

$Р(А+В)=Р(А)+Р(В)$

На экзамене по алгебре школьнику достается один вопрос их всех экзаменационных. Вероятность
того, что это вопрос на тему «Квадратные уравнения», равна $0,3$. Вероятность того, что это вопрос на тему
«Иррациональные уравнения», равна $0,18$. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите
вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Решение:

Данные события называются несовместные, так как школьнику достанется вопрос ЛИБО по теме «Квадратные уравнения»,
ЛИБО по теме «Иррациональные уравнения». Одновременно темы не могут попасться. Вероятность суммы двух
несовместных событий $A$ и $B$ равна сумме вероятностей этих событий:

$Р(А+В)=Р(А)+Р(В)$

$Р = 0,3+0,18=0,48$

Ответ: $0,48$

Совместные события

Два события называются совместными, если появление одного из них не исключает появление другого в одном и том же
испытании. В противном случае события называются несовместными.

Вероятность суммы двух совместных событий $A$ и $B$ равна сумме вероятностей этих событий минус
вероятность их произведения:

$Р(А+В)=Р(А)+Р(В)-Р(А·В)$

В холле кинотеатра два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится
кофе, равна $0,6$. Вероятность того, что кофе закончится в обоих автоматах, равна $0,32$. Найдите вероятность того,
что к концу дня кофе закончится хотя бы в одном из автоматов.

Решение:

Обозначим события, пусть:

$А$ = кофе закончится в первом автомате,

$В$ = кофе закончится во втором автомате.

Тогда,

$A·B =$ кофе закончится в обоих автоматах,

$A + B =$ кофе закончится хотя бы в одном автомате.

По условию, $P(A) = P(B) = 0,6; P(A·B) = 0,32$.

События $A$ и $B$ совместные, вероятность суммы двух совместных событий равна сумме вероятностей этих событий,
уменьшенной на вероятность их произведения:

$P(A + B) = P(A) + P(B) − P(A·B) = 0,6 + 0,6 − 0,32 = 0,88$

Ответ: $0,88$

Несовместные события

Два события $А$ и $В$ называют несовместными, если отсутствуют исходы, благоприятствующие одновременно как событию
$А$, так и событию $В$. (События, которые не могут произойти одновременно)

Вероятность суммы двух несовместных событий $A$ и $B$ равна сумме вероятностей этих
событий:

$Р(А+В)=Р(А)+Р(В)$

На экзамене по алгебре школьнику достается один вопрос их всех экзаменационных. Вероятность
того, что это вопрос на тему «Квадратные уравнения», равна $0,3$. Вероятность того, что это вопрос на тему
«Иррациональные уравнения», равна $0,18$. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите
вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Решение:

Данные события называются несовместные, так как школьнику достанется вопрос ЛИБО по теме «Квадратные уравнения»,
ЛИБО по теме «Иррациональные уравнения». Одновременно темы не могут попасться. Вероятность суммы двух
несовместных событий $A$ и $B$ равна сумме вероятностей этих событий:

$Р(А+В)=Р(А)+Р(В)$

$Р = 0,3+0,18=0,48$

Ответ: $0,48$

Механика

Кинематика

Равноускоренное движение:    
Ускорение: `a=(v-v_0)/t`  
Скорость: `v=v_0+at`  
Путь, пройденный телом: `S=v_0t+(at^2)/2` Три варианта формулы
  `S=(v^2-v_0^2)/(2a)`  
  `S=(v+v_0)/2t`  
`v(t)=S'(t)`    
`a(t)=v'(t)=S»(t)`    
Тело брошено под углом к горизонту:    
Горизонтальная проекция скорости: `v_x=v_0*cosalpha=const` Горизонтальная скорость постоянна
Вертикальная проекция скорости: `v_y=v_0*sinalpha` Вертикальная скорость меняется с ускорением `g`
Движение по окружности:  
Центростремительное ускорение: `a_(цс)=v^2/R=omega^2R`
Угловая скорость: `omega=(Deltavarphi)/(Deltat)=(2pi)/T=2pinu`
Связь линейной и угловой скоростей: `v=omegaR`

Динамика

Плотность: `rho=m/V`  
Второй закон Ньютона: `vec F=mvec a` где `vec F` — равнодействующая всех приложенных сил
Гравитационное притяжение: `F=G(m_1m_2)/R^2`  
1-я космическая скорость: `v_I=sqrt(gR)=sqrt((GM)/R)`  
2-я космическая скорость: `v_(II)=sqrt(2)*v_I`  
Закон Гука: `F=-kx`  
Сила трения: `F_(тр)=muN`  
Давление: `p=F/S`  

Статика

Момент силы: `M=F*l`  
Условие равновесия: `{(M_1+M_2+…=0),(vec F_1+vec F_2+…=0):}` Моменты «по часовой стрелке» берём со знаком плюс, моменты «против часовой» берём с минусом
Правило рычага: `F_1*l_1=F_2*l_2` это частный случай условия равновесия
Давление жидкости: `p=rhogh`  
Сила Архимеда: `F_A=rho_жgV_т`  

Импульс и энергия

Импульс: `vec p=mvec v`
Изменение импульса: `Deltavec p=vec FDeltat`
Работа силы: `A=F*l*cosalpha`
Мощность: `P=A/t`
КПД: `eta=A_(полезная)/A_(затраченная)`
Кинетическая энергия: `E_к=(mv^2)/2`
Потенциальная энергия тяжести: `E_п=mgh`
Потенциальная энергия пружины: `E_п=(kx^2)/2`

Механические колебания и волны

`x(t)=Asin(omegat+varphi_0)`  
`v(t)=x'(t)=Aomegacos(omegat+varphi_0)`  
`a(t)=v'(t)=-Aomega^2sin(omegat+varphi_0)`  
Период колебаний: `T=1/nu=(2pi)/omega`
Период математического маятника: `T=2pisqrt(l/g)`
Период пружинного маятника: `T=2pisqrt(m/k)`
Скорость волны: `v=lambdanu`

Метод группировки

Методом группировки удобно пользоваться, когда на множители необходимо разложить многочлен с четным количеством слагаемых. В данном способе необходимо собрать слагаемые по группам и вынести из каждой группы общий множитель за скобку. У нескольких групп после вынесения в скобках должны получиться одинаковые выражения, далее эту скобку как общий множитель выносим вперед и умножаем на скобку полученного частного.

Пример:

Разложить многочлен на множители $2a^3-a^2+4a-2$

Решение:

Для разложения данного многочлена применим метод группировки слагаемых, для этого сгруппируем первые два и последние два слагаемых, при этом важно правильно поставить знак перед второй группировкой, мы поставим знак + и поэтому в скобках запишем слагаемые со своими знаками. $2a^3-a^2+4a-2=(2a^3-a^2)+(4a-2)$

$2a^3-a^2+4a-2=(2a^3-a^2)+(4a-2)$

Далее из каждой группы вынесем общий множитель

$(2a^3-a^2)+(4a-2)=a^2(2a-1)+2(2a-1)$

После вынесения общих множителей получили пару одинаковых скобок. Теперь данную скобку выносим как общий множитель.

$a^2(2a-1)+2(2a-1)=(2a-1)(a^2+2)$

Произведение данных скобок — это конечный результат разложения на множители.

Геометрия на плоскости (планиметрия)

Пусть имеется произвольный треугольник:

Тогда, сумма углов треугольника:

Площадь треугольника через две стороны и угол между ними:

Площадь треугольника через сторону и высоту опущенную на неё:

Полупериметр треугольника находится по следующей формуле:

Формула Герона для площади треугольника:

Площадь треугольника через радиус описанной окружности:

Формула медианы:

Свойство биссектрисы:

Формулы биссектрисы:

Основное свойство высот треугольника:

Формула высоты:

Еще одно полезное свойство высот треугольника:

Теорема косинусов:

Теорема синусов:

Радиус окружности, вписанной в правильный треугольник:

Радиус окружности, описанной около правильного треугольника:

Площадь правильного треугольника:

Теорема Пифагора для прямоугольного треугольника (c — гипотенуза, a и b — катеты):

Радиус окружности, вписанной в прямоугольный треугольник:

Радиус окружности, описанной вокруг прямоугольного треугольника:

Площадь прямоугольного треугольника (h — высота опущенная на гипотенузу):

Свойства высоты, опущенной на гипотенузу прямоугольного треугольника:

Длина средней линии трапеции:

Площадь трапеции:

Площадь параллелограмма через сторону и высоту опущенную на неё:

Площадь параллелограмма через две стороны и угол между ними:

Площадь квадрата через длину его стороны:

Площадь квадрата через длину его диагонали:

Площадь ромба (первая формула — через две диагонали, вторая — через длину стороны и угол между сторонами):

Площадь прямоугольника через две смежные стороны:

Площадь произвольного выпуклого четырёхугольника через две диагонали и угол между ними:

Связь площади произвольной фигуры, её полупериметра и радиуса вписанной окружности (очевидно, что формула выполняется только для фигур в которые можно вписать окружность, т.е. в том числе для любых треугольников):

Свойство касательных:

Свойство хорды:

Теорема о пропорциональных отрезках хорд:

Теорема о касательной и секущей:

Теорема о двух секущих:

Теорема о центральном и вписанном углах (величина центрального угла в два раза больше величины вписанного угла, если они опираются на общую дугу):

Свойство вписанных углов (все вписанные углы опирающиеся на общую дугу равны между собой):

Свойство центральных углов и хорд:

Свойство центральных углов и секущих:

Условие, при выполнении которого возможно вписать окружность в четырёхугольник:

Условие, при выполнении которого возможно описать окружность вокруг четырёхугольника:

Сумма углов n-угольника:

Центральный угол правильного n-угольника:

Площадь правильного n-угольника:

Длина окружности:

Длина дуги окружности:

Площадь круга:

Площадь сектора:

Площадь кольца:

Площадь кругового сегмента:

Задача №17, экономическая

Стандартное начало условия:

  • 1-го числа каждого месяца долг возрастает на `color(green)(r%)`.
  • со 2-го по 14-е число каждого месяца необходимо выплатить часть долга.
  • 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.

Основная идея решения:

  1. каждый месяц (15-го числа) долг должен уменьшаться на одну и ту же величину, т.е. на `1/n` часть изначального долга, т.е. на `color(blue)(S/n)`
  2. каждый месяц (1-го числа) банк увеличивает остаток долга на `color(green)(r%)`.
  3. каждый месяц (2-14-го числа) клиент выплачивает начисленные проценты (пункт 2) и ежемесячную часть долга (пункт 1).

Составляем таблицу платежей по месяцам:

Взятие кредита:
15 декабря: Долг = `S` рублей.
 
1-й месяц:
1 января Банк начисляет проценты = `color(green)(S*r)`
  Долг = `S + color(green)(S*r)`
2-14 января Платим `color(green)(S*r) + color(blue)(S/n)`
  Долг = « `– [ color(green)(S*r) + color(blue)(S/n) ] = S-color(blue)(S/n) = (n-1)/n*S`
 
2-й месяц:
1 февраля Банк начисляет проценты = `color(green)(obrace((n-1)/n*S)^(«Предыд.долг»)*r)`
  Долг = `(n-1)/n*S+` `color(green)((n-1)/n*S*r)`
2-14 февраля Платим `color(green)((n-1)/n*S*r)+` `color(blue)(S/n)`
  Долг = `[(n-1)/n*S +` `color(green)((n-1)/n*S*r)]–` `[color(green)((n-1)/n*S*r)+` `color(blue)(S/n)]=` `(n-1)/n*S — color(blue)(S/n)=` `(n-2)/n*S`
 
3-й месяц:
1 марта Банк начисляет проценты = `color(green)((n-2)/n*S*r)`
  Долг = `(n-2)/n*S + color(green)((n-2)/n*S*r)`
2-14 марта Платим `color(green)((n-2)/n*S*r) + color(blue)(S/n)`
  Долг = `[(n-2)/n*S + color(green)((n-2)/n*S*r)] – [color(green)((n-2)/n*S*r) + color(blue)(S/n)] = (n-2)/n*S — color(blue)(S/n) = (n-3)/n*S`
 
(n-1)-й месяц: Остаток долга = `2/n*S`
1 мартобря Банк начисляет проценты = `color(green)(2/n*S*r)`
  Долг = `2/n*S + color(green)(2/n*S*r)`
2-14 мартобря Платим `color(green)(2/n*S*r) + color(blue)(S/n)`
  Долг = `[2/n*S + color(green)(2/n*S*r)] – [color(green)(2/n*S*r) + color(blue)(S/n)] = 2/n*S — color(blue)(S/n) = 1/n*S`
 
n-й месяц: Остаток долга = `1/n*S`
1 апребря Банк начисляет проценты = `color(green)(1/n*S*r)`
  Долг = `1/n*S + color(green)(1/n*S*r)`
2-14 апребря Платим `color(green)(1/n*S*r) + color(blue)(S/n)`
  Долг = `[1/n*S + color(green)(1/n*S*r)] – [color(green)(1/n*S*r) + color(blue)(S/n)] = 1/n*S — color(blue)(S/n) = 0`
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector